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CHAPTER 1. INTRODUCTION 

The word laser is an acronym for Light Amplification by Stimulated 

Emission of Radiation. A laser is a light amplifier which is capable of 

producing an intense beam of photons having identical scalar and vector 

properties. The ideas leading to the laser can be traced back to a theory of light 

emission proposed by Albert Einstein in 1917 [1]. However, the full 

implications of that work were not realized until much later. The principles 

of laser action were first described by Townes and Schawlow in 1958 [2]. The 

invention of the maser, which is the microwave equivalent device, by Charles 

Townes in 1959 stimulated a lot of research work. Finally, the first visible 

laser was demonstrated by Theodore Maiman in May 1960 [3] at Hughes 

Aircraft Corporation. Maiman's laser was small, consisted of a ruby rod, with 

its ends silvered to reflect light, which he placed inside a spring-shaped 

flashlamp. At room temperature, ruby is a three-level laser. In November 

1960, Peter Sorokin and Mirek Stevenson of the IBM T. J. Watson Research 

Center succeeded in lasing uranium laser [4], which was the first four-level 

laser. The four-level approach avoids the need to depopulate the ground state, 

makiiig the population inversion easier. 

These successes were only a beginning. Many gas laser systems and solid-

state lasers followed soon thereafter. Recent years have brought new systems 

like the tunable dye laser and short wavelength excimer laser. During the past 

three decades, laser technology has found a tremendous range of applications. 

Lasers are used in pure scientific research such as ultraprecise measurements of 

time and length. In industry lasers drill holes, cut metal and plastic, and 

perform welding, engraving, scribing, fusing, hardening, marking, and 
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melting. In medicine, lasers perform surgery, treat blindness caused by 

diabetes, and clean arteries. In stores, lasers read the striped symbols of the 

Universal Product Code. The range of applications for lasers continues to 

widen, not only in professional applications but in consumer electronics as 

well. The development of semiconductor lasers extends the application area 

remarkably. 

In 1962, Robert Hall demonstrated the first gallium-arsenide injection 

lasers [5] at General Electric's Research and Development Laboratories. Shortly 

after Hall, three independent groups reported similar devices. Those early 

devices required cryogenic cooling even for pulsed operation. Continuous 

wave oscillation of a semiconductor laser at room temperature was achieved in 

1970. By 1975, semiconductor lasers able to emit continuously reached the 

commercial market. Steady technical advances helped trigger a tremendous 

expansion in the semiconductor laser market that continues today. 

Semiconductor lasers, also denoted as laser diodes, differ from other laser 

systems due to their small size and light weight, large gain per unit length, 

wide gain spectrum, low mirror reflectivities , and mass-productivity by the 

same photolithographic techniques as electronic circuits. These unique 

properties of the laser diodes make them widely used as key elements in 

diverse optoelectronic systems. Though specially designed heterojunction 

light emitting diodes (LEDs) are used as light sources in optical 

communication systems with modest requirements in terms of bandwidths 

and fiber link distances, the use of laser diodes in optical communication 

offers the broader opportunity for producing high-performance systems. The 

gas lasers used as light sources for the early laser printers and optical disk player 
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systems (such as video disk players) have been replaced by the small laser 

diodes. Recently, research and developments in strained-layer quantum well 

laser diodes, high power arrays, surface emitting laser diodes, and miniature 

visible wavelength laser diodes have been making steady progress, and will 

eventually produce a variety of new applications for laser diodes. 

When a laser diode is operated in any kind of optical communication 

system, it is practically impossible to be free from the external optical feedback 

that takes place when a part of the output power is coupled back into the laser 

diode cavity after being reflected at an external surface. Operating 

characteristics of laser diodes are strongly affected by this external optical 

feedback. External feedback results in variations in threshold current, output 

power and output spectra of lasers. 

Depending on the application, even a relatively small amount of feedback 

may cause either beneficial or harmful effects to the laser diode operation. It 

may provide advantages for a number of applications requiring greater spectral 

purity and frequency stability than can be obtained typically from a solitary laser 

diode (without feedback). External cavity laser diode configurations are 

sometimes used to induce short optical pulse generation. In this case, the 

external cavity contains a focusing lens, a mirror, and possibly a wavelength 

control filter to produce optical feedback. The device is then actively 

modelocked by applying a repetitive electrical pulse stream with a period equal 

to the laser roundtrip time. Understanding the optical feedback effect on the 

properties of laser diodes may lead to the building of a sensor system such as a 

laser diode radar, which detects the range and velocity of the object, or an 

optical disk head, which detects the difference in reflectivities of pre-recorded 
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bits on the optical disk. Long access times due to relatively heavy optical 

head have been a big problem for read-only optical disk drives and a potential 

problem for erasable optical memory. By adopting the external cavity 

configuration, an optical disk head can be fabricated with only a small assembly 

of a laser diode chip and a photo detector, so that access times can be reduced 

dramatically owing to the head's light weight. In laser feedback 

interferometry, the optical-path dependent phase of the feedback results in a 

modulation of the threshold current when a weakly reflecting target is 

included in the lasing system. The modulation of the threshold current 

manifests itself in variations in the optical power output and energy 

consumption of the laser. The laser itself becomes a phase-sensitive detector. 

However, reflections from the optical components, e.g., coupling lenses 

or fiber endfaces, may sometimes contribute to deterioration of performance in 

optical communication systems. For an extreme example, under a certain 

feedback condition, laser linewidth may become enormously broadened to the 

order of 25 GHz and instabilities may occur, so practically laser diodes can not 

be used as a light source of the high performance communication system in 

this feedback regime. 

Following the first analysis of Lang and Kobayashi [6], a number of 

theoretical and experimental studies of external optical feedback have been 

undertaken during the last decade so that the influence of feedback has been 

widely discussed. And it is in fact still such an active research area that dozens 

of research papers are published each year. 

Much of the previous work has focussed on the laser diodes coupled to 

distant reflectors (long external cavity) in order to investigate the influence of 
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the reflections at optical interfaces such as lenses. Inherently, feedback level is 

usually low so that the multiple reflection effect can be ignored in the 

theoretical analysis for this case, as in Lang and Kobayashi's model. On the 

other hand, the short external cavity laser diodes are usually designed and 

formed intentionally for the purpose of stabilizing the mode characteristics or 

making laser diode sensors. Interestingly, this short external cavity case has 

been less extensively studied, even though it has more direct applications 

than the long external cavity laser configuration, partly because the strong 

coupling feature makes the dynamical model become too complicated to be 

analyzed. 

In this dissertation work, we study the effect of optical feedback to the 

laser diode. We mainly focus on the laser diode coupled to a short external 

cavity by developing model equations appropriate to analyze this 

configuration. The stationary and dynamical characteristics are investigated as 

well as the chaotic behavior of the modulated external cavity laser diode. 

Special emphasis is placed on the ultra short external cavity case, for which 

little investigation has been made. Throughout this work, the ultra short 

external cavity implies the case of external cavity length d < 20 ^un, where the 

optical output power shows extremely sensitive dependence on the change in 

the external cavity length, and the short external cavity covers 20 urn ^ d < 5 

mm. 

Chapter 2 presents a brief review of the previous work about the external 

cavity laser diodes, and gives a motivation for this work. 

In Chapter 3, we derive our model equations which are used in later 

analyses. The rate equations are derived when the effective reflectivity due to 
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the external feedback causes an additional loss and phase change to the original 

rate equations of the solitary laser diode. The multiple reflection effect is 

included in the model as a form of infinite series of time-delayed terms. This 

model equation can generally be used to describe any kind of feedback 

configuration, either weak or strong, long or short. The effective 

reflectivity operator in the infinite series form is reduced to the closed form 

with a short external cavity length approximation. 

Chapter 4 deals with the stationary solutions of our model equations, and 

discusses some of the basic properties of external cavity laser diodes. Also the 

open resonator model suited for the ultra short external cavity configuration is 

introduced. Based on the open resonator theory, we show that the coupling 

coefficient becomes a complex function of the external cavity length and the 

near field beam size of the laser diode. 

In Chapter 5, the dynamical properties of the external cavity laser diode 

are discussed. The rate equations are solved numerically to show the time 

evolution of the laser parameters. An investigation of the instabilities and 

chaotic behavior of the autonomous external cavity system are also contained 

in this chapter. 

Chapter 6 deals with the chaotic behaviors in the current-modulated 

external cavity laser diode. The subharmonic waveforms are obtained by 

numerical simulation. The bifurcation diagrams and the return maps are 

plotted for the various external cavity situations. It is shown for the first time 

that the period-doubling route to chaos is not the only route to chaos in this 

case. 
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Using the open resonator model derived in Chapter 4, the optical disk 

head is analyzed in Chapter 7. In order to make the external cavity optical disk 

head more practical, a large tolerance in flying height is preferred. The 

criterion for this tolerance which is useful for the design of the optical disk 

head is derived. The chapter also reports experimental results of the thermal 

bump distribution on metal coated glass, by configuring a laser diode and 

metal film as an external cavity laser diode sensor. This experiment is 

another good example of the external cavity laser diode as a displacement 

sensor, as well as helping in the understanding of the liftoff effect in the 

photoinductive method, which is one of the new techniques in the 

nondestructive evaluation area. 

Finally, Chapter 8 presents the conclusions. 
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CHAPTER 2. REVIEW OF THE PREVIOUS WORK 
AND STATEMENT OF THE PROBLEM 

Review of the Previous Work 

With the progress of optoelectronics, there has been an increasing 

interest in sophisticated coherent optical communication systems. Such 

systems directly employ the optical frequency or phase as a carrier, so they need 

extremely stable and narrow spectral characteristics. The linewidth of a Fabry-

Perot type or a DFB solitary laser emitting at X = 1.3 ^im is usually larger than 

50 MHz. For optimum use in a coherent optical communication system, the 

spectral characteristics have to be improved considerably. In the search for a 

stable narrow-linewidth source, it has been shown that the spectrum of laser 

diodes may be reduced in width by optically coupling an external cavity to the 

laser [7-12]. A semitransparent Au-coated GRIN-rod lens and a short spherical 

reflector are used to build an external cavity configuration, which reduces the 

laser linewidth to submegahertz [12]. External cavity lengths of the order of 10 

cm are used yielding spectral linewidths in the order of a few kHz [13], where a 

diffraction grating is used to make strong, frequency-selective feedback. 

However, it is also well known that optical feedback from reflections at 

fiber end faces may generate intensity noise in regular laser diodes, and the 

laser linewidth may broaden or split under the influence of feedback if the 

phase of the feedback is not controlled [14-17]. Tkach and Chraplyvy [14] 

experimentally show that the weak feedback level (as small as - 71 dB) can 

reduce or broaden the laser linewidth according to the feedback phase in the 

long external cavity configuration with external cavity length d = 40 cm. A 
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successful external cavity design makes use of the constructive interference of 

light reflected back into the laser diode cavity to enhance one mode relative to 

the other modes within the gain bandwidth. The conditions for optimum 

design of an external cavity laser diode have been investigated to obtain a 

single mode source [18]. It is recommended that laser diode cavity length L < 

200 jim, and external cavity length 50 |im < d < 200 p.m may be suitable for 

obtaining the single- longitudinal mode under high-speed modulation 

conditions. However, external cavity laser diodes are often sensitive to small 

current and temperature changes. By mounting the laser and external GaAs 

mirror chip on the same heatsink, temperature-stabilized external cavity laser 

diodes have been fabricated [19,20], and nowadays they are commercially 

available. It is shown that lasing mode may not hop in the usual temperature 

region ( in a range of more than 46 *C), and wavelength deviation is kept 

within 3 Â over 24 "C for a certain configuration [20]. With the progress of 

integrated optic technology, monolithic external cavity lasers have been 

fabricated yielding a potential for economic production and providing better 

mechanical stability [21-24]. 

As mentioned before, laser properties may deteriorate if the feedback 

phase is not carefully chosen. Especially for a long distant external reflection, 

these detrimental effects become more pronounced. The low-frequency 

intensity fluctuation and the transient optical response were experimentally 

studied [16,25]. It was asserted that the observed low frequency fluctuations, 

the light intensity recovery after a sudden drop to zero in a stepwise manner, 

each corresponding to an external cavity roundtrip time occur due to an 

intrinsic instability ( not a mechanical instability ) of the external cavity 
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configuration [26]. For a long external cavity, in a time interval less than the 

roundtrip time of external cavity x, the reflected feedback term may be 

considered as an injection of the stationary solution, since during such a short 

time, the reflected field can not respond to any changes. This coherent 

feedback assumption for a long external cavity was introduced first in Henry 

and Kazarinov [27]. It is referred to as the injection locking assumption [28], 

and used to show that the low frequency fluctuation is due to a bistability 

phenomenon, which accounts for the first sudden intensity drop. The 

subsequent intensity build-up is described as an iterative extension of the 

injection locking formalism. 

The coherence collapse phenomena [29], which include a spectral 

broadening of the order of several 10 GHz, and a kink in the light output 

versus current characteristics, have been studied, and it is shown that it is not 

due to the quantum fluctuation noise, but due to the inherent dynamical 

properties of the external cavity laser diode. Tkach and Chraplyvy [30] 

experimentally classified the regimes of feedback effects into five different 

regions as a function of feedback power ratio and external cavity length. They 

showed that the coherence collapse region is bounded by the high feedback 

level and the low feedback level, i.e., coherence collapse may occur at moderate 

feedback level. But their investigation was limited to the long external cavity 

configuration. 

Even though there were a lot of theoretical investigations in the 1970's, 

e.g., [31-33], Lang and Kobayashi's model [6] has commonly been used to 

analyze the external cavity laser diode exposed to weak or moderate feedback 

levels [34,35]. The model is obtained by adding a delayed feedback field to the 
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usual rate equation for the complex electric field of the solitary laser diode. 

The linewidth enhancement factor introduced by Henry [36] has been added to 

Lang and Kobayashi's original model to permit the inclusion of a gain-

dependent frequency shift effect in analyses [28,37,38]. Slightly different forms 

of rate equations have been used in numerical and analytical studies [39-41], 

but basically they are just slight variations or rearrangements of Lang and 

Kobayashi's model. In the numerical work performed by Schunk and 

Peterman [41], it is found that the lasing mode with the minimum linewidth 

is most stable rather than the mode with minimum threshold gain. 

However, since these models neglect the multiple reflection effects, they are 

valid only for the weak feedback level. 

Recently, a flying optical disk head has successfully demonstrated the 

capability to read and write signals to the phase-change optical recording 

medium [42,43], where the external cavity length between laser diode and 

recording surface is only several p,m. Also, a very short external cavity laser 

diode has been used as a diode laser sensor [44,45] and studied for various 

applications [46,47]. In order to further investigate the properties of the short 

external cavity, the multiple reflection effect should be included in the model 

equations. The steady state lasing conditions of a short external cavity laser 

have been studied by approximating the external cavity as a simple Fabry-Perot 

plane resonator [48-50] taking into account the multiple reflections. A simple 

formula for the spectral linewidth of the external cavity laser diode is given in 

the literature [50]. A special feature introduced in Sato and Ohya [50] is that 

the effective reflectivity is treated as a function of the phase coherence time. It 

is asserted that the feedback wave cannot couple coherently with the field 
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inside the diode cavity when the external cavity roundtrip time is much longer 

than the phase coherence time. As an another attempt to improve the 

model, the divergence angle of the output beam is included as one of the 

variables, assuming an elliptical Gaussian beam is exiting from the laser facet 

[51]. In the recent work by Hui and Tao [52], light intensity and phase are 

treated as random variables in stationary stochastic process and develop the 

differential rate equations for external cavity laser diodes which are applicable 

to any amount of external feedback. The works cited above seem to be 

successful in explaining the observed tendency of property change in the short 

external cavity laser diode, but there are still many aspects that should be 

investigated. For example,the output power versus external cavity length 

characteristic shows a considerably different pattern for the very short external 

cavity, which takes place in optical disk head application. And none of 

previous work investigates the dynamical characteristics of the short external 

cavity laser diode. It is, therefore, highly desirable to have a model that can 

properly describe the coupling phenomenon in an ultrashort and short 

external cavity laser diode. 

Statement of the Problem 

The goal of this dissertation work is to study the stationary and nonlinear 

dynamic characteristics of the laser diode with optical feedback. Emphasis 

will be placed on the short external cavity and ultra short external cavity case 

throughout this work. It is because there has been little investigation for these 

feedback regimes, but there are much more benevolent applications in these 
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regions, such as a laser diode sensor, an optical disk head, and a temperature-

stabilized single mode external cavity laser package. Various temporal and 

spectral characteristics will be investigated. And efforts will be made to find 

an optimum operating condition, (for example, optimum external cavity 

length) by comparing and discussing the properties as they vary the external 

feedback phase. 

The most general governing dynamic equations will be derived, which 

include the multiple reflection effects. It is very important to set up any 

model to correctly describe what happens physically, but the solvability of 

the model can not be neglected. Our general model equations will be reduced 

to the forms which allow either analytical or numerical analysis of the short 

external cavity laser diode with appropriate approximations. 

The stationary and dynamical properties will be investigated by solving 

developed model equations. A constant coupling factor will be used in most 

parts of the analysis, but for the ultra short external cavity, we will introduce 

the complex coupling coefficient in order to properly describe the coupling 

phenomenon [53] for the first time. This complex coupling coefficient has 

come from the inherent diffractive property of the open resonator, and is 

supported by new experimental results—the asymmetry in output power versus 

external cavity length characteristics [54]. This complex coupling -coefficient 

concept, which results from the open resonator model, is very useful and 

necessary for describing and analyzing the ultra short external cavity laser 

diode. 

Dynamical characteristics will be studied both numerically and analytically 

to examine the transient waveform of the laser parameters. The dynamical 
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stability condition will be presented too. Chaotic behavior of the autonomous 

system will be discussed. And the route to chaos for the current-modulated 

nonautonomous system will be investigated in detail. 

Finally some applications of this work will be given. 
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CHAPTERS. DERIVATION OF MODEL EQUATIONS 

In this chapter we derive the model equations used for the theoretical 

consideration in the following chapters. The theoretical investigations of the 

long external cavity laser diodes with weak feedback level have usually been 

based on the model developed by Lang and Kobayashi [6], which is obtained by 

adding a single delayed field term to the usual rate equation for the solitary 

laser diode. Here, we will present our basic model equations, which can 

describe the characteristics of the short external cavity laser diode better. 

Effective Reflectivity Operator considering Multiple Reflections 

A laser diode of length L coupled to an external cavity of length d is shown 

in Figure 3.1(a). Here pi and p2 are the field amplitude reflectivities of the 

laser diode facets, and pm is that of the external reflector. The equivalent laser 

diode is shown in Figure 3.1(b), where the influence of the external cavity is 

integrated in an expression for the effective facet field amplitude reflectivity pe • 

Pi and P2 represent the power output at each facet. We will describe the optical 

field P(t) of the laser as 

P(t) = E(t) exp(jcûot) (3.1) 

where E(t) is the slowly varying complex amplitude function, and COQ is the 

angular frequency of the solitary laser diode. Note that the solitary laser diode 

is assumed to oscillate in a single longitudinal mode. Also, we will neglect the 
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(a) 

Figure 3.1. (a) Configuration of an external cavity laser diode 

(b) The equivalent laser diode 
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spatial dependence of the optical mode. The complex amplitude E(t) can be 

expressed in terms of two real quantities: photon density S(t) and phase C)(t) 

E(t) = exp[j<D(t)] (3.2) 

Consider that the optical field (3(t-) has arrived at the facet 2 at time t*. At 

time t+, |3(t+) can be expressed as the sum of the reflected field from facet 2 and 

the multiple injected field due to the external reflector. 

l^R ^ ̂ 
p(t-) = P2 p(t-) —^ y [ c„ p(r-nT) (-P2P„)" 1 (3.3) 

Pz if 

where the power reflectivity of the laser diode facet 

R2= I Pil^ (3.4) 

and the roundtrip time in the external cavity is given as 

% = — (3.5) 
c 

The coupling coefficient Cn represents the fractional amount of coupled field 

into the laser diode at the n-th reflection. Now, the effective field amplitude 

reflectivity pe can be expressed as 



www.manaraa.com

18 

p(t+) I-R2 
X[c .  
n=l *-

p(t-nx) 
p(t) (-PlPm)" (3.6) 

Let's define a normalized feedback factor Z(t) as 

(3.7) 

then, Z(t) can be written using Eq.(3.1), (3.2) and (3.6) as. 

Z(t) = 1 - ^ ^ g(t"^-(-p2Pm)" exp{-j(ncoot-HD(t)-<I>(t-nx))} 

(3.8) 

Derivation of Rate Equations for a Solitary Laser Diode 

The interchange of energy between electrons and photons in a laser diode 

is governed by spontaneous and stimulated emission processes. The rate of 

energy transfer between electrons and photons is described by rate equations. 

The linewidth enhancement factor a was introduced by Henry [36] in order to 

explain the measured linewidth, which was about 50 times greater than that 

predicted by the modified Schawlow-Townes formula. The linewidth 

enhancement factor 
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is the ratio of the changes in the real and imaginary parts of the refractive index 

wi th  change  i n  ca r r i e r  dens i t y .  I n  A lGaAs  and  InGaAsP  l a se r s  a  i s  abou t  4 -7  

[36,37]. We will first derive the rate equations for the solitary laser following 

Henry [36]. The wave equation for the electric field is 

—- Ej (z,t) = — —- { E'p(z,t)} (3.10) 
dz c 9t 

The solution can be written as 

Ej(z,t) = P(t) exp (-jkz) + c.c. (3.11) 

where P(t) is the time dependent term represented as Eq.(3.1) and k is the wave 

number. To take into account that the change in the dielectric constant Er due 

to dispersion, which is caused by the time dependence of E(t), we may write. 

g 
Ù)' = (Og — j — (3.12) 

h 

where co' denotes the effective angular frequency, and 

Therefore er at co' is 
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er(w') = e,(mo)-j^^Er (3.13) 

Substitution of Eq.(3.11) and (3.13) into (3.10) will give the following first order 

differential equation, if we neglect the higher order derivative terms. 

E(t) (3.14) 

This approximation may be expressed as a "slow varying approximation", 

since it is assumed 

(ÛQ E(t) » E(t) 

The dielectric constant Er is complex and can be written as 

(3.15) 

where p.' and p," are a real and an imaginary part of the refractive index 

respectively. The imaginary part p," determines the net gain according to 

2(00 
g - a r  =  -  —H- (3.16) 

where g is the gain per unit length, and «r is the loss, including facet losses, 

which are usually approximated as uniformly distributed over the cavity. At 

threshold g = ar, Er is real and (oq is chosen so that 
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c 
(3.17) 

Changes in electron density will cause |i' and |i" to deviate from the threshold 

values, and Er becomes 

Ej. = [ (n'+ A|i') - j (^i"+ Am.") ] 

= (H'F - 2jn'A^i"(l+ja) (3.18) 

since |i"= 0 around the threshold. Here, a is the linewidth enhancement 

factor as defined in Eq.(3.9). The bracketed term on the left side of Eq.(3.14) is 

related to the group velocity Vg: 

a , _2 ^ . a 
aco' 

— I l ' .  = V- (3.19) 

Substituting Eq.(3.17), (3.18) and (3.19) into (3.14) gives 

Cùh 
E(t) = —VgAn" (l+ja) E(t) 

= Vg (l+ja) E(t) (3.20) 

The gain per unit length is related to the stimulated emission coefficient G (can 

be called the gain per unit time) as 
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G = g • Vg (3.21) 

and similarly the loss per unit length is related to the photon lifetime Xph as 

—— = (Xj • Vg (3.22) 
îph 8 

If we define the net gain per unit time AG as 

AG = G - = ( g - Or ) Vg (3.23) 
'ph ° 

the final equation for E is 

E(t) = i AG (1+ja) E(t) (3.24) 

For later use, we redefine the loss term ar as [55] 

: - ^ ' .1 a, = a: + -ln|—J (3.25) 

where ttg accounts for any optical loss within the laser cavity which does not 

yield a generation of carriers within the active layer, as for example scattering 

losses, and facet losses represented by the second term. Throughout this work. 

Pi and p2 are considered as real values, and the power reflectivities of laser 

facets are defined as; 
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Ri= I Pi P, (i = l, 2 )  (3.26) 

Lax and Louisell [56, 57] showed that, starting with a fully quantum 

mechanical model of a laser, the quantum problem can be transformed into a 

classical problem of calculating the statistical properties of a fluctuating wave 

field. The laser, like many classical systems having several variables 

fluctuating in time, satisfies a set of first-order ordinary differential equations 

that include random Langevin forces. The role of the Langevin force is to 

account for how the statistical distribution of the variable changes in time. In 

the laser diode, the Langevin noise force is arising from spontaneous emission 

[55] and should be added to Eq. (3,24). However, in our discussion, the noise 

effect due to the Langevin forces will be neglected. Further discussion about 

the Langevin noise can be found in several papers [37, 58, 59]. 

In addition to Eq. (3.24), a rate equation for the carriers is required, 

yielding for the carrier density N(t): 

where J(t) is the current density injected into the active region ( supplied by the 

bias current ) with thickness dact / q is the electron charge, ts is the carrier 

lifetime, G(N) is the stimulated emission coefficient as defined in Eq. (3.21), 

and S(t) is the photon density. Note that the stimulated emission coefficient 

G(N) is a function of the carrier density N, and can be expressed as 

(3.27) 
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G(N) = Gn(N-NO) (3.28) 

where Gn is the gain constant, and No is the carrier density at transparency. 

However, if we include the nonlinear gain compression effect, GN can be 

modeled as 

where k is the gain compression coefficient [55], which is zero in the linear 

gain model. Since a net gain is zero at threshold, Eq. (3.23) and (3.28) give 

Since Lang and Kobayashi [6] suggested that external feedback may be 

described by adding a time-delayed term Kf E(t-t) to the standard laser equation 

(where Kf is a feedback coefficient), a lot of work has used a similar model to 

analyze the behavior of the external cavity laser with weak feedback. Henry 

[37] included the effect of an a - parameter, and gave the expression as 

following: 

Gx(nonlinear) = G^ ( 1 - K S ) (3.29) 

G(Nth) = GN(Nth-No) = ~ 
^ph 

(3.30) 

Model Equations for the General External Cavity Laser Diode 

E(t) = Y (1+ja) E(t) + Kf E(t-x) exp[-jcoot] (3.31) 
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where 

^ P2 
(3.32) 

Tin is the roundtrip time in the laser diode cavity, and 

Rm = I Pm I ^ (3.33) 

is the power reflectivity of the external reflector. 

In the case of the long external cavity laser, Eq. (3.31) has been working 

well in describing its characteristics with little variation in its expression, 

according to the authors [28,40,41,60-62]. Evidently, Eq. (3.31) is valid only for 

weak feedback levels. The purpose of this section is to present a derivation of a 

similar rate equation valid for the short external cavity laser in which the 

feedback level is generally strong. 

There have been a lot of efforts to include the multiple reflection effects in 

analyzing the short external cavity laser [48,51,52,63]. The concept of an 

additional loss caused by an external cavity was introduced [51] and added to 

the rate equation intuitively [52] without proper derivation. Following the 

same steps used in the previous section, we can obtain the rate equation which 

is universally applicable to any kind of external cavity laser. 

The normalized feedback factor Z(t), which is shown in Eq. (3.8), is a 

complex function. We will define 
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Z(t) = I Z I • exp [ j9z ] (3.34) 

The effective loss per unit length with external feedback «rf becomes a 

complex function: 

1. r 1 
arf = as+ — In 

^ V Pi P2 2 

= Of - — In Z (3.35) 

where a real value «r is defined in Eq. (3.25). The net gain equation of Eq. 

(3.16) is changed into 

1 I 1 2coo 
g - Re[ Orf ] = g - Or + — In 1ZI = — |i" (3.36) 

and the wave number equation of Eq. (3.17) is also altered to 

Wo , . 0Z 
(3.37) 

Using Eq. (3.36) and (3.37) instead of (3.16) and (3.17) will yield the following 

differential equation: 

E(t) = ^(1+ja) + In {Z(t)} 
^in 

E(t) (3.38) 

where 
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ln{ Z(t)} = ln | z ! + j 0 z  ( 3 . 3 9 )  

and we use the relationship of 

Tin = (3,40) 
Vg 

Eq. (3.38) holds for any case, since Z as defined in Eq. (3.8) has no 

approximation. Now from Eq. (3.38) we may generate two coupled differential 

equations with the real valued variables S(t) and 0(t). Considering 

S(t) = E(t)-E'(t) (3.41) 

<D(t) =i[ln E\t) - In E(t) ] (3.42) 

we can easily yield the rate equations for the photon density and phase easily 

by differentiating Eqs. (3.41) and (3.42) and sustituting Eq. (3.38) 

S(t) = AG + —— In I Z(t) I 
Ti, "m 

S(t) 

6(t) = AG + 8z(t) 

(3.43) 

(3.44) 
"m 

Again, we want to mention that we ignore all noise terms including the 

spontaneous emitting noise power. 
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Slow Varying and Short External Cavity Length Approximation 

We can make the form of the normalized feedback factor Z(t) in Eq. (3.8) 

easy to handle with some approximation. The first approximation we will use 

This approximation implies that the reflectivity of thé external reflector 

reduces to rpm due to absorption or coupling losses. In many cases r may be 

assumed as a constant [64] or modeled to be a function of external cavity 

length d [51]. More rigorous analysis shows that r is also a function of n [53], 

which will be discussed in the next chapter. But, except for the ultra short 

external cavity case, Eq. (3.45) is a fine approximation. The parameter r can be 

treated as an experimentally-measured factor. 

The following approximation can be justified in the case of short external 

cavity length: 

The external cavity round trip time x is only 1 psec at d = 150^m. Considering 

the (-p2pm)" term in Eq. (3.8), the effect of the n-th reflections for n>10 is 

small enough to be neglected. Therefore, within the interested time scale ( 

order of nsec, considering the speed of the photodetector ), the approximation 

is: 

.n (3.45) 

S(t-nx) = S(t) - nx S(t) 

0(t-nx) = <I)(t) - nx0(t) 

(3.46) 

(3.47) 
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made in Eq. (3.46) and (3.47) is valid up to d = several cms. The last assumption 

we will make in this section is the slow varying amplitude approximation for 

S(t). Actually this is the basic assumption used to yield our rate equation in Eq. 

(3.14). Therefore the following assumption automatically holds, once the rate 

equation can be successfully applied. 

S(t-nT) 
S(t) 

nx S(t) 
T SO) 

X S(t) 
^ " 2  « 0  

(3.48) 

Substituting Eq. (3.45), (3.47) and (3.48) into (3.8) yields 

I + P2 (rpm) • exp [-j{coo + <i>(t)}x] 

exp [-j{ci)o + ^(t)}xl 
(3.49) 

I 

where subscript a in Za(t) implies that it is an approximated value. 

With definitions of 

(3.50) 

Q(t) = (i>o + C)(t) (3.51) 

Za(t) can be rewritten into 
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1+r 1 - u y exp [ -jQx ] 
ZAU,Q) = T (3.52) 

1 + P2 ( rpm ) 1 - -J U j • exp [ -jQt ] 

and the rate equations in Eq. (3.43) and (3.44) become 

U(t) = AG(N) + — In I Za(U,n) 1 (3.53) 
"^in 

Q(t) = coo + ~ AG(N) + — 0z (U,fi) (3.54) 
2 » 

where 

Z,(t)= IzJ exp [jOzJ (3.55) 
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CHAPTER 4- STATIONARY SOLUTIONS 
AND BASIC PROPERTIES OF EXTERNAL CAVITY LASER DIODES 

In this chapter, we consider the stationary solutions of our model 

equations derived in the previous chapter, and we discuss some basic 

properties of them. Due to the presence of an external cavity, the stationary 

solution ( the phase and amplitude condition ) is modified compared to the 

solitary laser diode. The influence of an external cavity has been widely 

explored theoretically as well as experimentally [48,50,62,65-68] . Numerous 

papers have focussed on analyzing the long and weak external cavity, since the 

reflection from the optical fiber ends or other optical components such as 

lenses, and beam splitters can change the properties of a laser diode 

dramatically [10,14,15,69-72]. 

A short external cavity laser diode can be used as a phase sensor [73], and 

in some cases, can improve the spectral characteristics of a solitary laser diode. 

Therefore, the characteristics of the short external cavity laser have been also 

the subject of many studies [18,49,51,74,75]. The properties of external cavity 

laser diodes are governed essentially by the external cavity length d and the 

strength of feedback level. It is impossible to find model equations which can 

explain all phenomena and can be applied to all external cavity configurations. 

The following section will consider the stationary solutions and several 

features of external cavity laser diodes, mainly laying stress on the short 

external cavity. The second section will deal with the special case, the ultra 

short cavity case, in which the open resonator model will be introduced. 
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Stationary Solutions and their Characteristics 

We have three coupled differential equations, Eqs. (3.27), (3.43) and (3.44). 

for the carrier density, photon density and phase. A set of stationary solutions 

can be defined as 

S(t) = Ss 

<I>(t) = AcOs't (4.1) 

N(t) = Ng 

where the subscript s implies the stationary solution. Acos is the stationary 

shift in angular frequency due to the external cavity. Now, we obtain from 

Eqs. (3.50) and (3.51) 

U(t) = 0 (4.2) 

^i(t) = CÙQ + AcOj = Qj (4.3) 

for the stationary solution, where Qg is the angular frequency of the external 

cavity laser diode. If we use the slow varying and short external cavity length 

approximation we discussed in the chapter 3, Eqs. (3.52), (3.53), (3.54) and (3.27) 

are reduced to in the stationary case: 
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1 + — exp H^sX] 
(4.4) 

1 + P2(rpm) exp [-jQsXl 

0 = AG(Ns) + :^ln I Zas(OA) I 
'in 

(4.5) 

+ •^AG(Ns) + T— 8z (OyOg) 
Z T-in " 

(4.6) 

(4.7) 

where Jb denotes the bias current density. Equation (4.5) gives a threshold gain 

condition for the external cavity laser diode. 

where Nth is the threshold carrier density for a solitary laser diode. Without 

external reflection ( i.e. pm = 0 )/ Ng = Nth • When the external feedback is 

introduced, the required gain for the threshold is either reduced or increased 

depending on the phase OgX , and shows a quasi-periodic function of x, in other 

words, a function of d. 

A phase condition is obtained by substituting Eq. (4.5) into Eq. (4.6): 

AG(Ns) = G(N,) - ~ = Gn ( Ns - Nth ) 

= - In I Zas(0,Qs) I (4.8) 
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AgT = OgT + — <x In I Zag(0,0g) I ] (4.9) 

Rigorously speaking, the actual phase condition should add the multiple of 2k 

to the right hand side of the equation. Without feedback, Zas = 1, Qzas = 0, 

and In I Zas ' = 0- Therefore Qs is simply equal to coo- With feedback, the 

shifted Qs can be calculated from Eq. (4.9). A graphical representation of Eq. 

(4.8) and (4.9) can give the qualitative explanation about spectral properties of 

the external cavity laser diodes. This method has been well-developed for the 

weak coupling case [62,66]. Once Og is determined from Eq. (4.9), Ns and Sg 

will be easily calculated from Eqs. (4.7) and (4.8). 

For later use, let's define some functions of angular frequency co, as 

L(cû) 5 In 
1 + P2 (rPm)^ + Zrpzpm cos (W 

2rpm 

2 P2 
+ cosCcoz) 

(4.10) 

C(tû) = 1 + (rPm)^ + (l+p2 ) cos (cox) (4.11) 

D(cû) 5 ( p2 - 1 ) sin (cox) (4.12) 

Then, we obtain 

In 1Z3s(0,Qs)1 =L(Qs) (4.13) 
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(4.14) 

Our gain and phase condition, Eqs. (4.8) and (4.9) will be reduced to the 

conditions for weak feedback [28, Eq. 7] in the limit of small rpm . Therefore, we 

assert that our threshold condition is applicable both to weak and strong 

feedback. It is interesting that though our derivation assumes a short external 

cavity, the resulting threshold condition is reduced to the same as those which 

are used for the long external cavity case. 

Function L, C, and D, defined as Eqs. (4.10), (4.11), and (4.12), are plotted in 

Figures 4.1,4.2, and 4.3 respectively. The abscissa represents a phase oyt, and the 

ordinate represents the function value. In the legend, the external reflectivity 

is expressed as 

where R'm includes the effect of coupling losses as defined in Eq.(3.45). 

Now, we are ready to discuss the graphical solving method for the phase 

(oscillating frequency change) condition. Equation (4.9) can be rewritten as 

Figure 4.4 shows an example of the graphical method. The abscissa represents 

a phase Ogi:, and the ordinate shows a calculated value of Eq. (4.16). The straight 

line shows the left hand side (LHS) of Eq. (4.16) and the curve with high Q 

(4.15) 

: , D(Qs) 
OcT - conX = —- tan a UOg) 

V c(n,) 
(4.16) 
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Figure 4.1. Function L 
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factor represents the right hand side (RHS) of Eq. (4.16). The sinusoidal curve 

represents the equation obtained with the weak coupling approximation [28, 

Eq.7]. In the legend |ie represents the effective refractive index of the gain 

medium. The zero crossing point of the straight line is COQX. The intersecting 

point of the straight line and the curve meets the new phase condition for the 

external cavity laser, and the oscillating frequency is changed to Qs from COQ. 

The frequency of the solitary laser COQ can easily be tuned as temperature 

changes or bias current changes. The roundtrip time x is also easily controlled 

by increasing or reducing the external cavity length d. Therefore, the point COQI: 

may be moved between 0 and 2k by controlling one of the following factors: 

temperature, bias current, or external cavity length d. 

As (OQi moves, the straight line moves parallel to the previous one, and 

the oscillating frequency of the external cavity laser Og changes 

correspondingly. Since the reflectivity of the external reflector is relatively 

high, R'm = 0.2, a considerable difference between our model and that of the 

weak coupling approximation can be noticed. The difference may be more 

significant in the situation shown in Figure 4.5. The external cavity length d is 

now increased to 300 ^m. Since the RHS of Eq. (4.16) is proportional to t, the 

amplitude of the curve becomes larger compared to the case in Figure 4.4. As 

a result, we have three intersecting points, which means there is a possibility 

to support three external cavity modes ( the stability of these modes will be 

discussed later) , However, if we use the phase condition derived from the 

weak coupling approximation ( using the sinusoidal curve ), we still end up 

with only one possible lasing mode. 
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Figure 4.4. Graphical solving method for the phase condition, where 
the straight line shows the left hand side of Eq.(4.16), the 
curve with high Q factor represents the right hand side of 
Eq. (4.16), and the sinusoidal curve represents the equation 
obtained with the weak coupling approximation : The 
parameters used are d = 50 |im, L = 250 |xm, |ie = 4.5, R2 = 
0.32, R'lxi = 0.2 and a = 6 
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Figure 4.5. Graphical solving method for the phase condition, where 
the straight line shows the left hand side of Eq.(4.16), the 
curve with high Q factor represents the right hand side of 
Eq. (4.16), and the sinusoidal curve represents the equation 
obtained with the weak coupling approximation : The 
parameters used are d = 300 ^m, L = 250 |im, jXe = 4.5, R2 = 
0.32, R'm = 0.2 and a = 6 
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In Figure 4.6, we show a totally different type of function ( RHS of Eq. 

(4.16) ) compared to the sinusoidal curve in the case of R'm > Rz A gradual 

change of the shape of RHS is plotted in Figure 4.7 as R'm is increased. 

Now, we will include the gain modulation effect of Eq. (4.8) in our 

discussion of lasing mode. Let's define the mode spacing of the laser diode 

cavity 

and the mode spacing of the external cavity 

8 f , 4 = ^  ( 4 . 1 8 )  

and the laser gain bandwidth of the gain curve due to the stimulated emission 

defined in Eq. (3.21) as 

Afgain = FWHM of material gain curve of solitary laser (4.19) 

For GaAs, 

for the nominal carrier density level [55], where 
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Figure 4.6. Graphical solving method for the phase condition, where 
the straight line shows the left hand side of Eq.(4.16), the 
curve with rather square form represents the right hand 
side of Eq. (4.16), and the sinusoidal curve represents the 
equation obtained with the weak coupling approximation : 
The parameters used are d = 50 pm, L = 250 jxm, |ie = 4.5, R2 
= 0.32, R'm = 0.8 and a = 6 
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Figure 4.7. Gradual change of the shape of RHS of Eq.(4.16) as R'm is 
varied 
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COh 
f„ = — (4.21) 

If we choose ordinary values of L=300^m and |ie =4.5, then Sf=l.l x 10^1 Hz, 

which gives 

fo ~ 3600 

for the wavelength of the solitary laser diode XQ = 0.75 |im. And it can be 

easily shown that 

For the short external cavity, external mode spacing ôfe is big and Eq. (4.23) 

has a larger value than the long external cavity. 

First, consider an extremely short external cavity, say, d=1.5|im. Then 

from Eq.(4.23), ôfe = fo/4. Therefore, the external cavity mode spacing is far 

greater than either the mode spacing of the solitary laser or the medium gain 

bandwidth. Consequently, once the solitary laser shows a single mode 

characteristic, the external cavity laser also shows single mode with shifted 

frequency according to phase condition of Eq.(4.9). If the amount of shifted 

frequency is big enough to make the net gain in Eq.(4.8) for that mode become 

greater than the net gain of the adjacent possible mode, the mode hopping 

effect occurs to change the lasing frequency by approximately 8f. However, 

the frequency shift effect is small in the case of an ultra short external cavity. 
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so those mode hopping phenomena does not occur. As d increases to several 

tens of micrometers, the mode hopping effect described above starts to occur. 

When the external cavity mode spacing 5fe becomes comparable to the solitary 

laser mode spacing 8f, both modes start to compete against each other. At 

another extreme case of the long external cavity, the external cavity mode 

spacing is reduced to a very small value, and multiple modes start to lase. 

These situations are illustrated in Figure 4.8 for the short external cavity 

and in Figure 4.9 for the long external cavity. So, unless we are considering 

the very long external cavity, which may cause the multiple external mode 

lasing situation, our assumption for a single mode rate equation can be 

justified. Otherwise, we should set up the equations for the multiple mode 

equations. Most of this work will deal with the single mode case; the single 

mode for a solitary laser will produce the single external cavity mode. 

The single mode condition may be easily obtained from Eq.(4.16). 

Graphically, the slope of the curve representing RHS of Eq.(4.16) should be 

smaller than the slope of the straight line representing LHS of Eq.(4.16). So we 

obtain 

single mode condition 

(4.24) 

or 
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Figure 4.8. Phase condition for the short external 

cavity laser diode 
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Figure 4.9. Phase condition for the long external 
cavity laser diode 



www.manaraa.com

48 

da 
a —- 8z. (0,Os) 

d«s dOs 
> 0  (4.25) 

This single mode condition is plotted in Figure 4.10. The RHS of Eq.(4.25) is 

calculated as external reflectivity changes. The lasing wavelength is assumed 

as X = O.ZS^m, and R2 = 0.32, and a = 6 are used. Since the derivative of 

function L has large magnitude only around = 2m7C, as clearly shown in 

Figure 4.1, RHS of Eq. (4.25) does not vary much from 1 at d = 7.6 ^m ( Qs^ is 

close to an odd multiple of n). Therefore, around d = 7.6 jim, the external 

cavity laser shows a single mode characteristic for all Rm- As d becomes close to 

7.8 |im (Qst=40jt ), RHS of Eq. (4.25) deviates from 1 around R'm = 0.32 ( which 

is the same as facet reflectivity ). Figure 4.10 shows that the external cavity 

laser may support multiple modes if R'm is close to R2 at d=7.799 ^im. After the 

external cavity length d exceeds 7.8p,m, namely at d = 7.801 |im, RHS of Eq. 

(4.25) always becomes greater than 1, which can be expected since the derivative 

of function L changes its sign at OgT = 2m7t, as can be seen in Figure 4.1. 

The above description is illustrated in Figure 4.11. The single mode 

condition ( RHS of Eq.(4.25) ) is plotted as a function of external cavity length 

for fixed R'm = 0.31. For d<6 p.m, the external cavity laser always operates as a 

single mode. As d increases, a multiple mode regime starts to exist as shown 

in Figure 4.5. In Figure 4.12, a similarly calculated plot is shown. All 

parameters used in the calculation are the same as for the case of Figure 4.11, 

except we use a = 1 in Figure 4.12. The larger the linewidth enhancement 

factor a is, the greater the chance for multiple mode oscillation. 
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We can conclude that a single mode condition will be met more likely for 

the short external cavity laser and for the external reflectivity well below or 

beyond the facet reflectivity. The behavior of RHS of Eq. (4,25) around OgZ = 

2m7C will be more investigated in more detail in Appendix A. 

In Figure 4.13, we plot the frequency of the external cavity laser as 

changing the external cavity length d. The ordinate represents the fractional 

amount of change in frequency. For small R'm , the frequency shift is only on 

the order of 10-4 , which is smaller than the value obtained in Eq.(4.22). This 

means that there is no mode jumping phenomena as external cavity length 

varies. However, for large R'm / especially in the case where R'm is close to R2 

, the amount of frequency shift can exceed the mode spacing of the solitary 

laser 5f around Qs'C = 2m7ï, which will cause mode jumping as external cavity 

length varies. 

Open Resonator Model for Ultra Short External Cavity 

This section is concerned with the development of a method of analysis 

that is particularly suitable for analyzing the output power characteristics of an 

ultra short external cavity laser diode by constructing an appropriate model of 

the complex coupling factor with the aid of open - resonator theory [76] . This 

model should describe properly the effect of multiple reflection as well as the 

dependency on the size of the near field pattern of the laser diode. The model 

under consideration is described in detail in following subsection. Numerical 

illustration of the output power characteristics of the external cavity laser diode 

is also presented and compared with experimental observations. 
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Open resonator formed bv rectangular mirrors 

An open resonator formed by two parallel rectangular mirrors at -a < x < a, 

-b < y < b, z = ± d is shown in Figure 4,14. A quantitative theory of open 

resonators with plane mirrors was first given in a paper by Fox and Li [77], 

where they calculated resonator modes by solving the diffraction integral 

equation iteratively. Vainshtein [76] gave a theory of natural vibrations for 

open resonators based on a rigorous theory of diffraction at the open end. The 

two mirrors represent a waveguide in which waves are propagated by multiple 

reflections parallel to the mirror surfaces. The rays are almost parallel to the z 

axis and for resonance we have 

= q q = 1,2,3 "* (4.26) 
cos 0 ^ 2 

where a small angle 0 represents the angle between the z axis and ray 

propagation direction. In this section, since we are mainly dealing with the 

ultra short external cavity, we assume the lasing frequency of the external 

cavity is same as that of the solitary laser diode, and we simply define the 

wavelength of laser as X. This assumption can be justified from the 

discussion of previous section. At the open end the wave is diffracted. Part of 

the energy may be turned through the angle 20, which results in the 

formation of a reflected wave. Using the free space wave number k = co / c, 

Eq.(4.26) can be rewritten as 

kd = 7i(q/2 + p) (4.27) 
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1"^ 2a 

Figure 4.14. An open resonator formed by two parallel 
rectangular mirrors 

Figure 4.15. An unfolded equivalent open resonator model of 
the external cavity 
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where q is a large integer ( for practical purposes q > 3 ) and p is small correction 

within a range of I p I < 1/2. In case of small 0, the x and y components of k 

are negligible, i.e., 

kx « k, ky « k (4.28) 

then, the quasi-mode amplitude eigenfunctions in the x-y plane can be put in 

the form of a product 

f(x,y) = fa(x)-fb(y) (4.29) 

where, in the fundamental mode 

fjx)-cosi + pd+i) / M J j 

fb(x) cos! 2b[l4-p(H.i)/Mb ]j 

- V ¥ .  
M^ = \ / ;— , Mu = \ / ;— (4.32) 

p = -((0.5) / VK = 0.824 (4.33) 

and Ç(z) is the zeta function of Riemann. 

The correction term p in Eq.(4.27) is given by 
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P = Pa + Pb (4.34) 

where 

Pa = f (Ma + P + iP)'^ (4.35) 

Pb = j(Mb + P + iP)"^ (4.36) 

for the fundamental mode, or in the real and imaginary form 

p. = Pa' - iPa" M 

P.' = T. .  '  ' 2  M-38) 

^ KM. + pf+ 
P a " = T . .  \  (^3* 

and similar equations can be obtained for py. 

The frequency co = co' - ito" of the oscillation is complex. Quantities p' 

and p" have the following meanings. In the time of t = 2d/c, there is an 

additional phase shift 

A = 2np' = lit ( Pa' + pb' ) (4.40) 
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and the fractional decrease of the energy 

A = 1 - exp(-47tp") = 1 - exp[-47t(pa"+pb ")] (4.41) 

For later use, let us connect Ma and My with the Fresnel zone number 

introduced in [77] 

2 2 

by the simple relations 

Ma = ̂ 87tNa, Mb = 787iNb (4.43) 

Complex coupling coefficient 

The external cavity of length d in Figure 3.1 can be considered as an open 

resonator in the following manner. In the most experimental situation, beam 

size on the external reflector is much smaller than the size of the reflector itself. 

Therefore, we can describe the problem by the unfolded equivalent open 

resonator formed by the emitting area of the laser diode ( 2a x 2b ) and separated 

by 2d as shown in Figure 4.15 [31]. In the case of a very short external cavity 

length ( 0 < d < 5 |im ), the near field spot size does not vary practically [78], 

and the field pattern maintains its Gaussian distribution property. Fox and 

Li's iterative solution [77] shows that the steady state field distribution has a 

Gaussian-like shape for the fundamental mode when a uniform plane wave is 

used as an initially launched wave. The approximate analytic solutions shown 
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in Eq.(4.29), (4.30), and (4.31) also show similar spatial characteristics. A 

condition in Eq.(4,28) is also satisfied for the external laser diode configuration. 

Now we assume that the guided modes inside the laser diode are smoothly 

matched to the eigenmodes of the external open cavity so that we can use the 

above properties of the open cavity to calculate the coupling coefficient. The 

effective field amplitude reflectivity defined in Eq.(3.6) can be reduced for the 

stationary case as. 

Equations (4.40) and (4.41) suggest that we should consider the nth coupling 

coefficient Cn to be a complex quantity of the following form: 

(4.44) 

where the phase delay due to the external cavity 

47td Y = (iyi = —T— (4.45) 

Cn = exp(-i27ipn) s exp(-5n) exp(-iAn) (4.46) 

where 

Pn ~ Pna Pnb ~ (Pan Pbn ) ^ (Pan Pbn ) (4.47) 
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It should be noted that Cn consists of an amplitude - reduction factor, exp(-5n), 

and a phase - modification factor, exp(-iAn). The amplitude - reduction 

parameter 5n and the phase - modification parameter An are given, 

respectively, as 

5„ = • 
P(Ma(n)  + p)  (3(Mb(n) + 13) 

[ (Ma(n) + pf + ff [ (Mb(n) + f 
(4.48) 

Ma(n) ( Ma(n) + 2p ) ^ Mb(n) ( MyCn) + 2P ) 

[(M,(n) + pf+P^f ' [(MyW + pf+pzf 
(4.49) 

where Ma, My, and Na, Ny are defined in Eqs. (4.42) and (4.43). 

It should be noted that since Sn and An are the functions of the Fresnel 

zone numbers, the coupling coefficient depends on the distance d and the near 

field beam size of the laser diode. 

The variation of parameters 8» and An with the Fresnel zone number 

N=Na=Nb is illustrated in Figure 4.16 for the case of a=b. We observe that Sn 

decreases monotonically with N while An has a maximum value of 0.58 at 

N=0.015. At a large value of N, which is the case where the external open 

resonator length for the n-th reflection ( 2 x nd ) is small, parameters 6n and An 

both approach zero as N approaches infinity so that Cn approaches unity, which 

is to be expected. As N decreases (i.e., the external cavity length d increases). 

An increases to give a larger phase - modification and 6n increases to reduce 

the amplitude of the coupling coefficient. On the other hand, in the limit of 



www.manaraa.com

61 

.001 .01 .1 1 

Fresnel Number, N 

Figure 4.16. Variation of the amplitude - reduction parameter Sn and the 
phase - modification parameter An with Fresnel zone 
number N 
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small N, An starts to decrease at N=0.015 as N is decreased and approaches zero 

as N -> 0. However, 5n has a finite value of 0.5(7c/[3)2 at N=0, which gives 

Cn=7xl(H. 

It should be pointed out that in the range N<0.015 our model could pose 

some problems because physically, as d approaches to infinity, N approaches to 

zero, and 5n remains at a finite large value rather than approaches infinity as 

we would expect in order to meet the condition of zero coupling in this case. 

However, in considering the ultrashort external cavity case, a large value 

of 2 X nd can occur only when n is a very large integer ( after many reflections ). 

Since the net change in pe is proportional to Cn [p2pm]"/ the amount of 

amplitude loss goes practically zero with a large value of n. 

Therefore, our model can work well especially for the ultra short external 

cavity configuration. Since 5n is a monotonically decreasing function of N, 

we observe that, as expected, the amplitude of coupling coefficient I Cn I =exp(-8n ) 

will be reduced if the cavity length d is increased. On the other hand, the An is 

a positive - definite quantity and represents the amount of phase - angle 

modification of the n-th reflection introduced by the coupling process at the 

laser facet in addition to the conventional phase shift n\|/ in Eq.(4.44) that was 

produced by the multiple reflection. This phase - modification effect, which, to 

our knowledge, is reported for the first time [53], is due to the inherent 

characteristics of the open resonator and should be considered when the 

external cavity laser diode is used as a phase sensor [45,73] or when the 

frequency characteristics are investigated [55]. The amplitude - reduction 

parameter ôn for Eq.(4.48) agrees with Voumard et al.'s coupling coefficient En 
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[31] (which, in our notation, is exp(-5n)) in the limit of Na »1 and Ny » 1 

Threshold current and output power characteristics 

In this subsection we give some calculated examples of threshold current 

and L-I characteristics by using simple linearized equations. Once the effective 

field reflectivity pe is obtained, the threshold current of the laser diode can be 

written as 

where Kth is a constant determined by the physical parameters, «s is the 

internal loss inside the laser diode cavity as defined in Eq.(3.25). The total 

output power characteristics above threshold can be written in terms of the 

normalized driving current In = I/Ith as 

where Pi and P2 are the power output at each facets shown in Figure 3.1, and 

Tiex is the external quantum efficiency. The factor of 2 is introduced in Eq.(4.51) 

because usually only one of the output power relationships is used to define 

the external quantum efficiency. Also, it is well known that if different laser 

facets with different reflectivities are used, the emitted powers are related by 

[79]. 

(4.50) 

P |+P2-2T|exIth( lN~ï  )  (4.51) 

[80], 
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Ri 
(4.52) 

and give the equations 

Pl = i^n»I,h(lN-l) (453) 
l-tTp 

P2 = Y|-ll,,I,h(lN-l) (4.54) 

In most cases, the power output, which is detected by an external 

photodetector, is Pi. The calculated result of the variation of the effective 

power reflectivity Rç, the threshold current Ith/ and the output power Pi of the 

laser diode with the length of external cavity d is illustrated in Figure 4.17, for 

the case of typical values of the parameters Ri =R2 = 0.32, R^ = 0.6, X = 0.78 [xm 

and 2a = 0.35 ^m, and 2b = 4 pm ( Hitachi CSP type laser diode [73] ). The 

multiple reflection effects are considered round trips up to 20 in obtaining the 

plots of Figure 4.17. In the plots shown in Figure 4.17 the solid - line curves 

represent the result in which the effect of the presence of the phase -

modification parameter An is included while the dashed - line curves represent 

the case where An is set equal to zero, (i.e., the effect of An is neglected). For the 

calculation of output power characteristics the bias current ly = 1.3 Itho is used, 

where Itho is the free - running threshold current with no external reflector 
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Figure 4.17. (continued); (b) the normalized threshold current vs. 
the external cavity length d 
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Figure 4.17. (continued); (c) the normalized output power vs. 

the external cavity length d 
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(Rm = 0). The straight lines in Figure 4,17 represents the case of no external 

reflector. 

It is interesting to observe that because of the effect of phase modification 

introduced by the parameter An, the positions of peaks and valleys of the plot 

are shifted from those for the case where the effect of An is neglected. 

Furthermore, the spacing between two adjacent peaks is no longer a constant 

of X/2 but changes with the range of d under consideration. In particular, in 

the range of small d, peaks and valleys show an exponential-like decay pattern, 

which agrees qualitatively with our experimental result shown in Figure 4.18 

(the starting position do is not exactly measured and thought to be less than 10 

p.m). For this experiment, a Mitsubishi ML-4402 laser diode is used. The 

encapsulation of the laser diode package was removed to allow the formation 

of a short external cavity. Since the starting position is not exactly known it is 

difficult to compare with our model directly. However, it can be seen clearly 

from Figure 4.17 (c) that the shape of the output power curve between two 

adjacent valleys exhibits some degree of asymmetry, which will be discussed in 

next subsection. This asymmetry is also influenced by the effect of the presence 

of An; for example, it becomes more pronounced for the case of An # 0 (see the 

solid - line curve of Figure 4.17(c) ) than for the case of An = 0 (i.e., the dashed -

line curve of Figure 4.17(c) ). 

Asymmetry in the optical output power characteristics 

We have shown that the coupling coefficient Cn, representing the 

fractional amount of coupled field into the laser diode at the n-th reflection, 

becomes a complex function of the external cavity length and the near field 
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Figure 4.18. Experimental result of output power versus external cavity 
length for the case of X  =  0.78 nm, where the starting 
position is not exactly measured 
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beam size of the laser diode. This subsection gives the experimental evidence 

supporting our complex coupling coefficient model - the asymmetry in output 

power versus external cavity length characteristics [54], 

The single mode AlGaAs laser (Mitsubishi ML4402, A, = 0.78 )im) was 

mounted on a temperature stabilized platform by means of a Peltier device. 

The encapsulation of the laser package was also removed to allow the 

formation of a short external cavity. The external reflector was placed on a 

voice coil motor to vary the external cavity length. The tilt angle was 

minimized by 5-axis positioner. In Figure 4.19, the output power detected by 

the monitoring photo detector located at the rear facet is shown when the 45% 

reflector mounted on the voice coil motor is oscillating. The laser diode was 

biased at 1.5 Itho • The 83 Hz triangular waveform shows the current being 

applied to the voice coil motor. The horizontal axis represents a time axis. 

The velocity of the voice coil motor may be approximated as a constant around 

the central portion of the linear waveform, while the coil movement slows 

down around the current peak values. This effect can be seen in the output 

power characteristics in which time duration between adjacent peaks becomes 

longer as the current waveform reaches its peaks, while the distance between 

adjacent peaks should remain X/2. There are about 60 peaks within a half 

period of the applied current waveform, and this implies that the external 

cavity length is increased about 23 |im during this period. The external cavity 

length do at the middle position is measured to be about 20 [im. This 

experimental curve also illustrates an exponential-like power decay pattern in 

the small d range, due to the amplitude-reduction parameter 5n. In Figure 4.20, 
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Figure 4.19. Oscillograms showing the applied current to the voice coil 
motor where the 45 % reflector is mounted for vibration, 
and resulting optical power variation detected by 
monitoring photodiode 



www.manaraa.com

72 

H-H-f-H-H 

OC 

Time (10 iisec/div) 

I! 
A 3 a 

% 
OC 

(b) 1 i i ! 
r T 1 n 

! 

} "\ i i 

iX 

\ 1 
\ i 
\i 

i 

f M t f 1 f\ r { f I ] 1 r I MM 
i\ \ 2 M M i V M 

i 
i-H+l , 1 1 1 !  1 1 1 I 1 1 1 V M rt-r 1 \J 1 r 1 I II t ( M f t V 1 1 

j 

i 
i-H+l 

! : ! 
! 

'  " " " ]  

• 1 T ^ 

: ! '  " " " ]  

Time (10 psec/div) 

Figure 4.20. Oscillograms of P - d curve on an expanded scale to show a 
big asymmetry in (a) Rm = 0.95 and a small asymmetry in 
(b) Rm = 0.04 



www.manaraa.com

73 

the laser output power around the center of the linear waveform of the driving 

current is illustrated on an expanded scale. We can consider these 

experimental curves as output power versus external cavity length (P - d) 

characteristics. A 95% external reflector was used to get the result shown in 

Figure 4.20(a), and a 4% reflector was used for Figure 4.20(b). The asymmetry 

in P - d characteristics is clearly shown especially for the high external 

reflectivity. An asymmetry factor is defined as 

AF = ^ (4.55) 
% 

where, di is the distance from the valley to the adjacent peak in P - d curve, 

and d2 is the distance from the peak to the adjacent valley. 

Since the threshold gain has its peak values at valleys of I pe I and vice 

versa, the peaks and valleys in the P - d curve coincide with those in the Re - d 

curve, so that the two curves have the same AF value. Using Eqs.(4.44) - (4.49) 

AF is numerically calculated as a function of Rm / and compared with the 

experimental data in Figure 4.21. The emitting area used for calculation is 2.1 

|j,m X 0.7 iim, the typical value given in the Mitsubishi data book, and Ri = R2 

= 0.32, do = 20 |i.m. It can be seen that AF varies with d in the very small range 

of d, but becomes insensitive to d if d is greater than a few |im. From Figure 

4.22 it can be seen that AF is also a function of the emitting area. On 

calculation, the parameter 2a = 2.1 p.m is used, and 2b is varied from 0.55 to 

1.05 |im. The experimental data were obtained using three laser diodes each 

with different far field radiation angles, which are converted to the near field 

beam size. In Figures 4.21 and 4.22, the experimental results show qualitative 
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Figure 4.21. Asymmetry factor as a function of external reflectivity, 
where open circles represent the experimental data obtained 
at do = 20 pm 
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Figure 4.22. Asymmetry factor as a function of near field beam size, 
where open circles represent the experimental data obtained 
at do = 20 |xm: Beam sizes are converted from the far - field 
radiation angles given by manufacturer 
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agreement with the calculated values. Once a real coupling coefficient is used 

for calculation, it is found that no asymmetry, i.e., AF=1, occurs at the range of 

d greater than a few nm. Even considering pm as a complex number as for a 

metal reflector does not make any difference. While, if a complex constant is 

given to the coupling coefficient as 

Cn = exp (-iA) (4.56) 

where A is a constant, the peak/valley condition is easily obtained by finding 

zeroes of the first derivative of Re with respect to d as 

(4.57) 

which shows AF=1 for the real coupling coefficient ( A = 0 ), but asymmetry 

will take place for the imaginary coupling coefficient ( A 0 ). This simplified 

analysis supports our assertion: the asymmetry in the P - d curve can be seen as 

an evidence of a complex coupling coefficient. Equation (4.57) also suggests 

that AF is increased as p m or sinA is increased. These effects are shown in 

Figures 4.21 and 4.22 where it can be seen that a smaller emitting area causes a 

greater diffraction loss, so that the phase - modification parameter An becomes 

larger. The discrepancy between theory and experiment shown in Figures 4.21 

and 4.22 seems to be caused by the overestimation of An at the range d>10 |im 

of our model discussed in the preceding subsection. 

So far, we have assumed a single lasing frequency. However, it is well-

known that lasing frequency is shifted or sometimes shows mode - jumping to 
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the adjacent mode. In short external cavity, as shown in Figure 4.8, the 

external - cavity mode spacing is much greater than the longitudinal mode 

spacing of solitary laser diode, and it is usually much greater than the gain 

profile bandwidth. Therefore mode jumping effects tend to be suppressed. In 

case of d = 20 [im, the external cavity mode spacing becomes 6fe = fo /lOO 

according to Eq.(4.23), which is the similar order of the laser gain profile 

bandwidth ( see Eq.(4.20) ). Assuming the worst case, the frequency may be 

shifted to the edge of the gain profile (i.e., about lOOÔf shift, which can hardly 

occur ). In other words, the maximum wavelength shift within a X/2 change 

in d is less than 2% of X, which can also cause asymmetry in the P - d curve. It 

can be easily shown by following similar analysis used to get Eq.(4.57), that AF 

due to a 2% change in X is less than 1.05, much smaller than our experimental 

data. In addition, it can be easily seen that the Doppler X, - shift in our 

experiment is negligibly small. In conclusion, we have shown that the 

asymmetry in the P - d curve observed in the short external cavity laser diode 

can be explained only by considering a complex coupling coefficient. This 

proves the validity of our open resonator model for the short external cavity 

laser diode derived in the previous subsections. 

The asymmetry has practical importance in laser - diode sensor application 

[45,73] • Usually, the short external cavity configuration coupled to a flat 

mirror is used as a phase sensor. The operating position should be carefully 

controlled since the maximum sensitivity ( I 0P/3d I ) can be changed once the 

operating position is moved to the opposite slope in the P - d curve. Also, the 

AF measurement may allow an estimate of the near field beam size of the laser 

diode. From our model, it is expected that di + d2 > X/2 at ultra short 
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external cavity length ( d < 1 |im ). This kind of experiment was hardly 

possible with our setup, but one of the previously published results for the 

optical disk head showed this tendency (Figure 13 in [42] ). More discussion 

will be followed in Chapter 7 about the application of external cavity laser 

diodes. 
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CHAPTER 5. DYNAMICAL PROPERTIES AND CHAOS 

In this chapter, we consider the dynamical properties of the external 

cavity laser diode from our model equations. From a practical point of view, 

it is very important to study the dynamical properties of the laser diode system, 

since in high-speed optical communication, it is modulated up to the 

frequencies comparable to the relaxation oscillation frequencies. The rate 

equations are solved numerically to show the time evolution of laser 

parameters. Also, with some approximation, they are solved analytically by 

linearized small signal expansion to give a simple expression for the relaxation 

oscillation frequency. 

Dynamical stabilities are investigated for the stationary solutions obtained 

in Chapter 4. Since we do not consider the limit cycle solutions (periodic 

solutions of nonlinear differential equations) [81] of our rate equation set, the 

stability study is focussed on the equilibrium points. 

The optical feedback introduces the time delay terms as shown in Eq.(3.3). 

When such delay terms are included in the nonlinear differential rate 

equations, laser parameters may show the chaotic behavior. Lenstra et al, [29] 

showed that with relatively strong feedback, the spectral line width is suddenly 

broadened on the order of 25 GHz. Since the coherence length of the laser light 

has then collapsed from about 10 m without feedback to about 10 mm with 

feedback, they called this feedback region "coherence collapse". Tkach and 

Chraplyvy [30] classified the regimes of feedback effects as a function of 

feedback power ratio and external cavity length, but only for the cases where 

external cavity length is longer than several cm. In a wide intermediate region 

between very low feedback level and very high feedback region, the laser 
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linewidth is observed to be several GHz, which corresponds to the coherence 

collapse region. Understanding of this deleterious effect on the laser diode has 

practical importance in designing optical communication systems, since it 

helps to reduce the noise level and improve the system performance by 

preventing from operating laser diodes in such regions. Therefore, the 

chaotic dynamics and bistabilities have been an active research field, and a lot 

of papers [16,82-90] investigate the bistable and chaotic behaviors of the external 

cavity laser diode. However, most of them considered long external cavity 

configuration and used the basic equations of Lang and Kobayashi [6]. 

Recently, stability analysis for the short external cavity configuration has been 

performed numerically [91] and analytically [92], and it shows that a laser 

remains stable for any feedback level without any coherence collapse if the 

external cavity length is shorter than about 5 mm. However, they still use the 

weak coupling model similar to Lang and Kobayashi's, so their analysis can 

not be directly adapted to the ultra short external cavity case. We will discuss 

the chaotic behavior in detail in the last part of this chapter. 

Normalized Rate Equations 

In this section, we will modify the form of our model equations to a set of 

simultaneous differential equations with the variables of S, N, and Q, which 

are easier to handle. The normalized feedback factor Z(t) defined in Eq.(3.7) is 

approximated as Za(t) in Eq.(3.49) with slow varying and short external cavity 

assumptions. Simple algebra will lead to 
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InlzJ 

= In ' 

^ (rPm) f X s 1 2rpm 
l-~ ]cos(£2x) 

A o  J  

:+(P2rPm) .'"If; 
+2p2rp m -li) cos(Qx) 

(5.1) 

Using the slow varying approximation discussed in Chapter 3 which implies 

11- « 1 (5.2) 

we can obtain 

In IZ. I = L(0) + In, 
1 -T — A(0) 

(5.3) 

l -T-B(n) 

where 

Aid)  =  

(rPm) rPm , 
—=— + —— cos (nx) 

R2 p2 
(5.4) 

i + %^ + ^cos(nt) 
R2 P2 
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R2(rpm)^ + P2(rPm) COS iClx) 
B(Q) s (5.5) 

1 + R2 (rpm) + 2p2(rpm) COS iClx) 

and L(0) is defined in Eq.(4.10). Functions A and B are plotted in Figures 5.1 

and 5.2, respectively. Function B always has finite value, while Function A 

blows up for Qx = 2n, and rpm = - P2 • Once the following conditions are 

satisfied. 

X ^ A(Q) « 1 , T B(n) « 1 (5.6) 

Eq.(5.3) can be further reduced as 

X S 
InlzJ =L(n)-^-[  A(0)-B(0)]  (5.7)  

which is a reasonable approximation except both Qx = 2n and rpm = - P2 are 

satisfied. 

Substituting Eq.(5.7) into Eq.(3.53) gives 

GN(N-Nth) + :^L(Q) 
S(t) = S(t) (5.8) 

1 + — [ AiQ) - B(n) ] 
tin 

Similarly, the phase of Za(t) is 
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Figure 5.1. Function A 
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0z (t) = P2 
(R2-I) Sin (Qt) 

( ' f 
1 + (rp^f + ^(l+Rz) cos (Qx) 

(5.9) 

which can be reduced to 

02 (t) = 
D(Q) 

C(n) + | | [ I -(rp„fl  

(5.10) 

if we assume the slow varying photon density approximation shown in 

Eq.(5.2). Here, functions C and D are defined in Eqs. (4.11) and (4.12) 

respectively. Now, let us define function 6, which represents the difference in 

0Za(t)/ and compare it to the stationary 6za(^s) defined in Eq.(4.14) as 

5(S,S)^i | [ I-(rpj ' ]  (5.11) 

which will give the simple form 

0Z (t) = 
D(Q) 

C(fi) + Ô(N,Q) 
(5.12) 

Here, we use Eq.(5.8) to change the variables of 5 in Eq.(5.11) into 
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Gn (N-Nth) + — L 
5(N,Q) = -^ [ 1 - (rpmf ] — 

^in 

(5.13) 

Now, we transform Eq.(3.54) into regular first order differential equation form 

by differentiating both sides of Eq.(3.54) with respect to t and using Eq.(5.12), 

a 

a . . '  "  ' • ~ N  

1 -
1 

^in 9 Q 

(5.14) 

where 

3 02. 

dN 2 
= ̂ [(rPm) -1]  

D 'N 

(C + 5)^ + D^ 1 + JL(A-B) 
Xii 'in 

(5.15) 

aez. 
( d C  98 1 

^  d  Q  dQ J 

an (C + 5)^ + D^ 
(5.16) 

Now, we have three coupled first order differential equations, Eq. (3.27), (5.8) 

and (5.14), which have the form 

dX, 
-^ = Fi(Xi,X2,X3) + fi(t) (5.17) 
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where Xi's represent S, N, O, and forcing term fi(t) exists due to the injected 

current density J(t). Equation (5.14) can also be transformed into the form of 

Eq.(5.17) by substituting Eq.(3.27) into Eq.(5.14). 

If the time t does not appear explicitly in the RHS of Eq.(5.17) (i.e., constant 

current or DC biasing in our case), the set of equations is called autonomous. 

In contrast, if the time t appears explicitly, the system is referred to as 

nonautonomous [93]. 

For convenience and for ensuring the accuracy in numerical calculation, 

we will normalize the variables as follows: 

(5.18) 

SR = Gtsj-Xph'S 

where 

(5.19) 

Note that all variables in Eq.(5.18) SR, NR, QR, TR, and JR are unitless 

quantities. The three coupled rate equations are now transformed into 
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2t 
(^R ~ ^) + L(Qr) 

SRCO = F| (SR , NR , ) -
*'in 

1 + — [ A(QR) — B(QR) ] 
(5.20) 

NR(t) = Fj(SR,NR,nR)=-^[jR-NR]-
""S 

Njj  — 1  + SO (5.21) 
-N 

a , '^ph 3 ®z 

FTR(T) S F3 (SR , NR , QR ) P ; 5-3 T ^ R 
1 d Q z '  

ÛJotph 
^in 9 £2r 

(5.22) 

where 

kfvj  =  GM'NJH'T N^^th '•ph (5.23) 

With these definitions, the stationary solutions can be written as 

Ac 
C2rc = — (5.24) 

COo 

which can be determined by solving Eq.(4.16) and 

Nrs = ^ ~ IT" (5.24) 
^ th ^in 
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SRS — GN TPH s — 
1 

^ [ JR - NRS ] 

(5.26) 

1 - 2 — L(Qrs) 

Relaxation Oscillation and Damping Characteristics 

When the laser diode is driven by a step-current-pulse, a damped ringing 

of optical power, with the relaxation resonance frequency frx, occurs, yielding 

upper limits for the attainable modulation frequency. These relaxation 

oscillations result from well-known interplay between photon density and 

carrier density with their respective lifetimes tph, tg [55]. In order to study this 

phenomenon, it is useful to investigate the rate equations by linearized small 

signal analysis. For simplicity, we assume the lasing frequency is fixed and 

will use the set of two rate equations for the photon density and carrier density, 

i.e., Eqs. (5.20) and (5.21). 

A laser diode is considered with modulation of the injection current 

around the mean current <JR> according to 

JR(T) - <JR> + AJR (5.27) 
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where a small modulation amplitude I AJR I « <JR> is assumed. The rate 

equations may be linearized yielding the variations of the carrier density and 

the photon density around their mean values <NR> and <SR>, respectively. 

NJ^CT) = <NR> + ANR (5.28) 

SCCT) = <SR> + AST (5.29) 

Now, inserting Eqs. (5.27) - (5.29) into the original rate equations (5.20) and 

(5.21), and linearizing them by choosing the linear terms only, we can obtain 

kN"ANR-<SR> + 
ASR(t) = 

2Xnh 
KTVJ ( <NR> - 1 ) + L AS; 

(5.30) 
1 H [ A — B ] 

ti, *'in 

ANR(T) = [ AJR — ANR ] — ANR <SR> — <NR> — 1 + T— 
kN 

ASR (5.31) 

Combining these two equations will give the second order differential equation 

ASR + 
<SR> [1 + KFV;(<NR> — 1)] 

ASR + — ASR 
1  +  — ( A - B )  

^in 

= J<N'<SR>-:p'AJR 
'•s 

(5.32) 
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To derive Eq.(5.32), we use the stationary solution Eq.(5.25). Equation (5,32) 

may be written into a form of driven oscillator of resonance frequency Orx and 

damping coefficient ad as follows: 

ASR + 2 ad ASg + co?x'ASR = AjR 
""S 

(5.33) 

Here 

ûîrx = 2 7tfrx = 
<SR> 1 -

2X ph 

•"in 

1 + —— ( A — B ) 

05 

(5.34) 

and 

a d = 2  <SR> + (5.35) 

Then, the solution to Eq.(5.32) has the form 

ASR oc exp[-a(jt] exp f~± (5.36) 
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Following the same procedure, we can easily show that the second order 

differential equation for the photon density becomes in the case of the solitary 

laser diode (i.e., no feedback). 

ASR + <SR> + ASR + <SR> ASR — KM'<SR> 'R R '^N 
'ph (5.37) 

Equation (5.32) will reduce to Eq.(5.37) if we use <NR>=1 (this is the case for the 

solitary laser diode around the threshold level) and t = 0. 

Comparing Eq.(5.32) to Eq.(5.37) gives some implications about the change 

in damped relaxation oscillation due to external feedback. First, damping 

coefficient aj is not changed from that of the solitary laser diode. Since <SR> 

is also inversely proportional to Ts, as shown in Eq.(5.26), the envelope of the 

oscillations is such that the oscillations decay in a period of time on the order of 

the carrier lifetime. Also, the higher the optical power, the shorter the decay 

time. The angular resonant frequency corx in Eq.(5.34) has a multiplicative 

factor which is the function of A,B, and L, compared to o)rx = <Sr>0-5, the 

resonant frequency of the solitary laser diode. 

In Table 5.1, the set of physical parameters and their numerical values 

which will be used in our calculation is summarized. Some of those values 

are quoted from the literature [28]. 

From Figures 4.1, 5.1, and 5.2, we can see the resonance frequency becomes 

higher around Qx = 2K , and R'M becomes closer to R]. Also, as the external 

cavity length increases (assuming R'm can be maintained ), (i.e., x increases) 

resonance frequency decreases. 
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Table 5.1. Physical parameters and their numerical values 

Parameter Symbol Value 

Gain constant GN 1.1 • 10-12 m3/sec 

Carrier density at transparency No 1.1 • 1024 /m3 a 

Carrier lifetime ts 0.5 nsec 

Photon lifetime "ïph 2psec 

Laser cavity round trip time ^in 9psec b 

Linewidth enhancement factor a 6 

Active region volume V 10'16 m3 

Active layer thickness 0.2 pm 

3 Therefore 

Nth = No + — = 1.55 • 10^^ / 
T:ph 

 ̂|ie = 4.5, L = 300 pm 
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The influence of weak optical feedback on the relaxation oscillation was 

discussed in the literature [60]. In this section we derived a simple expression 

for the relaxation oscillation frequency and damping coefficient which can be 

applied for both strong and weak feedback in a short external cavity 

configuration. This expression may be useful for designing an external cavity 

laser diode to give high relaxation oscillation frequency, so that it can be 

modulated at very high frequency. 

In order that ASR does not grow exponentially in Eq.(5.36), corx^ should 

have a positive value. It gives the simple stability condition 

1  +  —  ( A - B ) > 0  ( 5 . 3 8 )  

since 

2 ̂  
1 ^ L(Q) > 0 (5.39) 

is always satisfied. 
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Dynamical Stability Condition 

Consider the autonomous nonlinear differential equation set of Eq.(5.17), 

The time evolution of Xi(t) (i=l,2,3) can be completely determined if we have 

three initial conditions Xi(0) (i=l,2,3). In the case of nonlinear systems, the 

concept of stability is not clear-cut in comparison with the linear time-

invariant systems. Gibson[94] mentions that there are 28 different classes of 

stability in current use. Some of the important features of nonlinear systems 

are as follows: 

1. The stability of an unforced system can be very dependent upon the initial 

state Xi(0). 

2, The stability is dependent upon the input. For example, an unforced system 

may be stable, but the same system, subject to a step input, may be diverged. 

We shall restrict ourselves to nonlinear systems subject to constant inputs 

(constant current density) only, in this chapter. Actually the stability theory 

for systems subject to arbitrary inputs is still very underdeveloped. And we 

will consider the local stability in this section. Assume that Eq.(5.17) has an 

equilibrium point (or a fixed point stationary solution) X^. The system is said 

to be locally stable if, when subject to a sudden small perturbation, it tends to 

remain within a small specified region R surrounding X^. It should be noted 

that stability in the above sense does not require the state to return eventually 

to XO. Since we are concerned with the dynamics in the immediate 

neighborhood of the equilibrium point, we can linearize the variables around 

that point. By introducing the deviation vector ÔX, defined by 
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and by defining the Jacobian matrix 

aP] d F j  aPi  
dlq â)^ 

dF2 aPz dFz 

dX^ a3^ a3^ 

ap3 aPs aPs 

axi  axz axg 
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(5.40) 

(5.41) 

We can obtain the following linear vector differential equation valid in the 

immediate neighborhood of X^: 

6X = J-SX (5.42) 

The stability of this system depends entirely upon the nature of the eigenvalues 

obtained from the equation [95] 

I s l - J  1 = 0  ( 5 . 4 3 )  

The system is locally stable if and only if none of the three eigenvalues of J is 

located in the RHS of the s-plane. If some of the eigenvalues coincide, it may 

be necessary to include extra functions depending on the number of 

independent eigenvectors belonging to the multiple eigenvalues. 
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Following this procedure starting from Eqs.(5.20) - (5.22), we obtain the 

dynamic stability condition 

Stability Condition 

(X —— — 2 

1+ 
(Do [ Tin -1 MCQr) ] + HAR) . . 

> 0 (5.44) 
1  +  ~ ( A - B )  

tin 

where 

H(QR) = 

*'in dQ,  R 

(d + D^) 
(5.45) 

1  +  ~ ( A - B )  
"in 

C ^ - D  

M(Qr) = 
dOR dQ R 

x [ d  +  D ^ ]  
(5.46) 

A detailed derivation is given in Appendix B. From the physical point of 

view, Eq.(5.38) should be satisfied for ensuring stability. Therefore, we may 

assert that the strict stability condition is 
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Strict Stability Condition 

1 + ~ ( A - B ) > 0  ( 5 . 3 8 )  

and at the same time 

dL 
a 2 H(QR) 

d^R ,  ^ 
1 + > 0 (5.47) 

(DO [ TIN -1 M(QR) ] + H(FI[R) 

However, in most phase of short external cavity configuration, condition 

Eq.(5.38) is met unless R'm is very close to R2. In this case, we can simply use 

Eq.(5.44) as the measure of dynamical stability. In Figure 5.3, Eq.(5.44) is 

plotted when R'm = 0.2. At short external cavity length, the system is quite 

stable for all the phase values. When d = 100 |im, the figure shows that the 

system becomes unstable around Qx ~ 1.92 Jt. Figure 5.3 qualitatively shows 

that Eq.(5.44), i.e., the stability condition, is heavily dominated by the dL/dQR 

term if we compare it with Figure 4.1. This implies that a frequency change 

effect caused by gain change ( due to the external cavity ) is dominant for 

determining the dynamical characteristics of the external cavity laser. An S-

shaped peak and valley in the stability condition curve becomes sharper as R'm 

becomes closer to R2. As a result, Eq.(5.44) predicts that the system becomes 

abruptly unstable as the phase changes from fix = 27t+ to Qx = 2n', which is 

very unrealistic. However, in this specific example, we should also consider 

the condition Eq.(5.38), which will show the system is unstable around 
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Figure 5.3. Plot of stability condition, where the negative value denotes 
the dynamically unstable region 
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i i x  =2n ,  if R'm is close to R2. This condition can easily be met in the short 

external cavity laser diode. 

Numerical Simulations of Rate Equations 

The rate equations (5.20) - (5.22) are solved numerically by using the 

Runge-Kutta algorithm. The physical parameters used in the calculation are 

summarized in Table 5.1. Typical simulation results are shown in Figures 5.4-

5.6. Those plots are photon density, carrier density and angular lasing 

frequency of the laser diode coupled to a 3 pm long external cavity. The 

effective external reflectivity R'm is chosen as 0.2, and relative current density 

JR = 1.02. When the photon density SR surpasses the steady state value, the 

carrier density NR and frequency QR have a negative slope with respect to time. 

As shown in Eq.(5.22) the derivative of Hr is proportional to the derivative of 

NR . Therefore, the time evolution of angular frequency shows the same form 

as that of carrier density. The optical frequency is varying (laser chirping 

effect) according to the change in optical power. Therefore, the spectral line is 

broadened under current modulation (AM), since the intensity modulation is 

always accompanied by a frequency modulation. Marcuse et al. [96] showed 

approximate analytical solutions and numerical simulation results of rate 

equations. However, they used only two equations, considering S and N. 

Our solution can give the transient solutions for S, N, and O, so it may be used 

in investigating the suitable current pulse shape for reducing the laser chirp 

effect. 
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Figure 5.4. Simulation of photon density at X = 0.78 urn, Ri = R2 = 0.32 
R'm = 0.2, d = 3 |i,m, and J = 1.02 
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Figure 5.5. Simulation of carrier density at A. = 0.78 nm, Ri = Rz = 0.32 
R'm = 0.2, d = 3 jim, and J = 1.02 
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Figure 5.6. Simulation of lasing angular frequency at X = 0.78 jim, Ri = 
R2 = 0.32 R'm = 0.2, d = 3 |im, and J = 1.02 
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In Figures 5.7-5.9, we show the simulation result where the biasing 

current density is abruptly changed from 1.2 to 1.3. The parameters used in 

the calculation are d = 93.79 |i.m and R'm = 0.3. The photon density is 

increased and settled down after damped relaxation oscillation, while the 

carrier density and angular frequency do not make noticeable changes after 

ringing. 

In Figure 5.10, we plot the photon density as a function of time, for the 

case of d = 7.79 ^m, R'M = 0.3, and JR = 1.25. The expected stationary 

conditions should be SRS=0.0005 and NRS»1.19. We use SRi=0.0001 and 

NRi=1.2 as the initial conditions. Physically, this example may be thought of 

as a simulation of the abrupt change experienced by the external cavity length ( 

only few tenths of a |im ), since the photon density is a very strong function of 

external cavity length, especially for the short cavity case as shown in Figure 

4.18. As expected, the photon density will suffer the damped relaxation 

oscillation. If we calculate the ringing frequency using Eq.(5.34) - (5.36), we get 

fr'^ = 103, which is approximately half of the actual ringing period shown in 

Figure 5.10. The error in analytical estimation using Eq.(5.34) is mainly due to 

the linearized small signal approximation. As shown in Figure 5.10, the 

magnitude of relaxation oscillation is three times bigger than the steady state 

value. Therefore, the small signal approximation used to derive Eq.(5.34) does 

not hold in this case. However, the simple estimation is still useful since the 

estimation error is not significant, and it can show us the tendency of change 

in relaxation frequency as some parameters change. When the amplitude of 

relaxation oscillation is small, the approximate analytic estimation shows 

good agreement with the numerically calculated values. 
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Figure 5.7. Simulation of photon density when J is abruptly changed 
from 1.2 to 1.3, at X = 0.78 |im, Ri = R2 = 0.32, R'm = 0.3, 
and d = 93.79 |im 
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Figure 5.8. Simulation of carrier density when J is abruptly changed 
from 1.2 to 1.3, at X = 0.78 |im, Ri = R2 = 0.32, R'm = 0.3, 
and d = 93.79 jim 
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Figure 5.9. Simulation of lasing angular frequency when J is abruptly 
changed from 1.2 to 1.3, at X = 0.78 |im, Ri = R2 = 0.32, 
R'm = 0.3, and d = 93.79 |im 
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Figure 5.11 shows the time evolution of photon density with the same 

initial conditions and same physical parameters, except the external cavity 

length d = 7.985 p.m. Since there is a big difference between the initial 

conditions and final stationary solutions, it will suffer a quite huge transient 

change. However, this is unrealistic of course, since it is impossible to 

change external cavity length abruptly ( much faster than the photon lifetime ). 

Nevertheless, we can draw some conclusions: first, relaxation oscillation 

frequency becomes higher as the average photon density increases, so it will be 

much nicer to maintain the operating external cavity length in phase so that 

the laser output maintains peak value in Figure 4.18. The next point which we 

want to emphasize is that even the small change in external cavity length will 

introduce not only a significant change in steady state characteristics as 

discussed in chapter 4, but also large change in transient effect to the laser 

diode parameters. The effect caused by current modulation will be discussed in 

the next chapter, using the simulation program whose validity is proven in 

this section. 

Chaos in the External Cavity Laser Diode 

Brief review of chaotic system 

In the 19th century, H. Poincaré already discovered that certain 

mechanical systems whose time evolution is governed by Hamilton's 

equations could display chaotic motion. In 1963, Lorenz [97] found that even a 

simple set of three coupled, first order, nonlinear differential equations can 

lead to completely chaotic trajectories. 
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Figure 5.10. Simulation of photon density at X, = 0.78 |xm, Ri = Rz = 0.32, 
R'M = 0.3, JR = 1.25, and d = 7.79 |im 
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Figure 5.11. Simulation of photon density at A, = 0.78 jim, Ri = R2 = 0.32, 
R'm ~ 0.3, JR = 1.25, and d = 7.985 |im 
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In modern usage, deterministic chaos denotes the irregular or 

unpredictable motion that is generated by nonlinear systems whose dynamical 

laws uniquely determine the time evolution of a state of the system either in 

terms of differential or difference equations. Now, we must distinguish 

between random and chaotic motions. In random motion, we really do not 

know the input forces or we only know some statistical measures of the 

parameters. But the chaotic problems do not have any random or 

unpredictable inputs or parameters. In that sense, they are called deterministic 

chaos. The unpredictability comes from the property of the physical or 

mathematical systems, the time history of which has a very sensitive 

dependence on initial conditions. In recent years, it has been proven that this 

phenomenon is abundant in nature and in many branches of science ( e.g., 

fluids mechanics, chemical reactions, plasma, and biological models etc. ) and 

a lot of literatures deal with the general and broad theory about deterministic 

chaos [98-101]. The chaos in optical science was briefly reviewed in [102]. We 

will only consider the dissipative systems ( e.g., a forced pendulum with 

friction ) [101]. Another branch of the chaotic system is the conservative 

systems ( e.g., planetary motion, which is governed by Hamilton's equations ). 

There are three particularly important routes to chaos which are observed 

as some external parameter is changed and as the time evolution of the system 

changes from regular to chaotic. The most recent route to chaos is the period-

doubling route. In the period-doubling phenomenon, one starts with a system 

with a fundamental periodic motion. Then as some experimental parameter 

is varied, the system undergoes successive period-doubling ( or pitchfork ) 

bifurcations. This process will accumulate at a critical value of the parameter. 
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after which the motion becomes chaotic. This phenomenon has been 

observed in a number of physical systems, especially in laser systems [82, 103 -

105]. 

A second route to chaos is called the intermittency route to chaos. 

Intermittency means that a signal which behaves regularly in time becomes 

interrupted by statiscally distributed periods of irregular motion ( intermittent 

bursts ). The rate of these bursts increases with the variation of an external 

parameter and the time evolution eventually becomes completely chaotic. 

This route to chaos provides a universal mechanism for 1 / f-noise in nonlinear 

systems. A tangent bifurcation will lead to this type of route to chaos [101]. 

A third route is called the quasi - periodic route to chaos, or sometimes 

called the Ruelle - Takens - Newhouse route, after names of researchers who 

discovered this route. In 1944, Landau considered that chaos could be viewed 

as the result of an infinite sequence of Hopf bifurcations. However, Ruelle 

and Takens [106] and Newhouse [107] showed that after only two instabilities 

in the third step, the trajectory becomes attracted to a bounded region of phase 

space in which initially close trajectories ( limit cycle solutions ) separate 

exponentially such that the motion becomes chaotic. These particular regions 

of phase space are called strange attractors. [98,99] 

Coherence collapse and chaotic behavior in the long external cavity laser diode 

Several experimental and theoretical investigations [16,28,29,61,82,86-92] 

have dealt with irregular chaotic behavior in the external cavity laser diode. 

The external cavity considered is always much longer than the length of the 

laser diode and usually shorter than the coherence length of the solitary laser. 
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Typical external cavity lengths vary from a few millimeters to several meters. 

Many efforts were made to investigate the situation with moderate amounts of 

optical feedback ( 0,1 - 10 % output power coupled back into the laser ), since 

low-frequency self-pulsations [16], and dramatic line broadening up to 25 GHz 

[29] were reported experimentally. 

The theoretical work by Mork et ai.[28] shows that, at least well above 

threshold, the fluctuating instability in light intensity is caused from the 

nonlinear dynamics themselves, and the spontaneous recombination noise 

does not cause that instability. These can be thought of as strong indications in 

favor of deterministic chaos. However, not all experimentally observed 

phenomena are well understood so far. Another approach to investigating 

the coherence collapse phenomena is to study the relative intensity noise (RIN) 

[87], the spectral properties, and the coherence times [86,89] of the external 

cavity laser, to directly see the abrupt increase in noise figure as some 

parameter is varying. 

The coherence collapse feedback regime is bounded by regimes of single 

mode narrow linewidth operation at both very high and very low feedback 

levels [30]. The coherence collapse at high feedback levels, which at low bias 

currents manifests itself as low-frequency intensity fluctuation due to the 

bistable stationary solutions [28], is demonstiated as following a period-

doubling route to chaos [61]. In Tromborg and M0rk[61], they found the limit 

cycle solutions of rate equations using their injection locking model, which is 

valid only for the long external cavity configuration. And using the Poincaré 

mapping technique, they showed that the limit cycle solutions undergo a 

period-doubling bifurcation numerically. The transition to coherence collapse 
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at low feedback levels was studied by the same researchers [92]. Undamping of 

the relaxation oscillations will give rise to a self-sustained periodic limit cycle 

solution, and will initialize the route to chaos. And it is argued that this 

sequence follows the quasi-periodic route to chaos. 

The coherence collapse in a long external cavity with moderate feedback 

level has tended to be recognized as a chaotic phenomenon recently, even 

though the efforts to clearly distinguish the deterministic chaos from the noise 

driven instabilities are still one of the active research areas. In Cohen and 

Lenstra [88], the authors argue that coherence collapse is dynamically stable for 

all values of linewidth enhancement factor a, (except a=0), which means that 

if a laser operates in the coherence collapsed state, it will stay there forever, 

and the presence of small fluctuations will not alter this situation. 

Is the short external cavity laser always stable? 

It has been shown that external cavity lasers exhibit a good stability 

without any coherence collapse in computer simulation, if the external cavity 

is shorter than about 5 mm [91]. And there have been no experimental reports 

for observing coherence collapse in the short external cavity configuration. In 

the work cited in the previous section [92], it is shown analytically that for a 

short external cavity, there may be no transition to coherence collapse at low 

feedback level. However, those works mentioned above have used the weak 

coupling approximation, which may not be justified for the ultra short external 

cavity configuration. 

According to our simplified linearized model in Eq.(5.32), we can not 

expect the Hopf bifurcation to occur since the coefficient of the first derivative 
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term, i.e. 2ad , is always positive. This means it is highly possible that our 

model does not have limit cycle solutions. Furthermore, our model 

equations which are used in our numerical simulation Eqs.(5.20) - (5.22) 

assumed a slow-varying amplitude and a short external cavity length 

approximation. So, they differ from the original model equations derived in 

Chapter 3 in that Eqs. (5.20) - (5.22) do not have a complete 3 - degrees of 

freedom, since the derivatives of NR and QR are proportional each other (refer 

to Appendix B for the detailed calculation of eigenvalues of the Jacobian 

matrix). Only the system, whose degrees of freedom are greater than three has 

the possibility of having a chaotic or strange attractor for the autonomous 

system [99]. Therefore, with the model equations used in this chapter, we can 

not expect to ever find any chaotic solutions. 

However, we show that the fixed stationary solution for the short external 

cavity laser becomes dynamically unstable in certain external cavity phases as 

shown in Figure 5.3, Those instabilities may be found even in a very short 

external cavity laser, but the range of external phase that shows those 

instabilities is so small ( almost a pinpoint of Qx ~ 2K and R'm = R2 ) that in a 

practical sense it might not be observed easily. In order to rigorously 

investigate dynamical stability and the possibility of chaos, we should solve 

our model equations derived in Chapter 3 directly without further 

approximation, which is difficult since inherently the equations do not allow 

simple numerical techniques to solve them. Those works remaine to be 

studied further. Another interesting point is that even though some chaotic 

behavior can exist, the frequency range of those chaotic signals may be far 

beyond the capability of the detecting system. The roundtrip time of the short 
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external cavity is only of the order of psec, so the intensity fluctuating noise or 

the oscillation due to Hopf bifurcation will easily have a several tens or several 

hundreds GHz frequency spectrum. This may be an explanation why the 

coherence collapse phenomena were not observed experimentally, if they ever 

did exist. 

In this chapter, we discussed the chaos of an autonomous system (i.e. 

constant bias current). In the next chapter we will consider in detail the case of 

current modulation, which has more practical importance. 
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CHAPTER 6. ROUTE TO CHAOS IN THE 
CURRENT - MODULATED EXTERNAL CAVITY LASER DIODE 

In this chapter, we study the chaotic behaviors in the current-modulated 

external cavity laser diode based on the numerical solutions of rate equations 

Eqs.(5.20) - (5.22). The chaotic behavior in nonautonomous laser systems has 

been investigated by several authors. And it was found that detuned laser 

systems have period-doubling bifurcations for injected light signals [103]. 

Modulation of the laser excitation rate or the modulation of the cavity losses 

was shown to result in chaotic behavior [108]. The period-doubling route to 

chaos in a directly modulated solitary laser diode has been reported [104] and 

analyzed [105,109]. Since this chaotic behavior may limit the data transmission 

rate in a high-speed optical communication system, this study on the chaos 

has practical importance. Therefore, the effects of spontaneous emission 

[104,105] and gain saturation [110] on the chaotic behavior in the current-

modulated laser diode are also studied. On the same token, the effect of 

external feedback on the chaotic behavior is worth being investigated. 

Mechanism for Period Doubling Bifurcation 

We will introduce the concept of period - doubling bifurcation in this 

section by studying the logistic map 

Xn+l = fr(Xn) = rXn'd-Xn) (6.1) 
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shown in Figure 6.1. Even though we study the logistic map, the chaotic 

behavior is not tied to the special form of the logistic map. Feigenbaum [111] 

has shown that this route to chaos occurs in all first - order difference equations 

Xn+i = f(xn) in which f(xn) has (after a proper rescaling of Xn ) only a single 

maximum in the unit interval 0 ^ Xn ^ 1. 

First, we investigate the stability of the fixed points of f r(x) and f r^(x) = 

fr[fr(x)] as a function of r. Figure 6.2 shows that fr(x) has, for r<l, only one 

stable fixed point at zero, which becomes unstable for l<r<3 in favor of x* = 1 -

1/r. Generally, a point x* is called a fixed point of a map f(x) if 

i.e., the fixed points are the intersections of f(x) with the bisector. A fixed point 

is locally stable if all points XQ in the vicinity of x* are attracted to it. The 

analytical criterion for local stability is easily shown as 

For r>3=ri, we have I  f r'(x*) I = 1 2  - r I  >  1, i.e., x* also becomes unstable 

according to criterion Eq.(6.3). Figure 6.3 shows fr(x) together with fr^(x) for 

r>ri. For r>ri, the old fixed point x* in f2 become unstable, and two new 

stable fixed points xi, X2 are created by a pitchfork bifurcation as shown in 

Figure 6.3 (b). This pair xi, X2 of stable fixed points of is called an attractor 

X* = f(x*) (6.2) 

^ f(x ) I < 1 (6.3) 
d X 
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fr(x) 

Figure 6.1. The quadratic map fr (x) on the unit 
interval 

fr(x) 

1 

0 1 X 

fr(x) 

1 

0 X 1 
(a) (b) 

Figure 6.2. The fixed points of fr for 

(a) r < 1 and (b) 1 < r < 3 
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fr(x) 

1 

0 

fr(x) 

1 

0 

Figure 6.3. (a) f(x) and f [f(x)] for r>ri 

(b) Generation of two new stable fixed points in 
f [f] via a pitchfork bifurcation 
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of f(x) of period-two, because any sequence of iterates which starts in [0,1] 

becomes attracted by xi, X2 in an oscillating fashion. 

If we keep increasing r beyond a certain value X2 , the fixed points of f2 

also become unstable. After this instability, the fourth iterate f4 = f2 • f2 

displays two more pitchfork bifurcations which lead to an attractor of period 

four. These examples show the period-doubling bifurcation. For r > r» , with 

a certain value roo at which chaos starts, periodic and chaotic regions are 

densely interwoven, and one can find a sensitive dependence on the 

parameter values. 

Numerical Simulation 

In Figures 6.4 - 6.7 we show the simulated waveform of relative photon 

density Sr. After Sr reaches steady state ( at Tr = 1700 ), sinusoidal current is 

superimposed on the bias current to make the total current 

JR = JRO + msin (  co^TR )  ]  (6.4) 

where m is the modulation index and Cùm is the modulation angular 

frequency. This current modulation term is substituted into Eq. (5.21). And 

the set of rate equations (5.20) - (5.22) are solved numerically by the same 

algorithm discussed in Chapter 5. The parameters we use in calculation are: d 

= 7.6|im, R2 = 0.32, R'm = 0.318, and JRO = 15. The modulation frequency is 

chosen as com = 1.052 corx, where corx is a relaxation oscillation frequency defined 

in Eq.(5.34). If we actually calculate this frequency, we get fm = 8.06 GHz. 
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Figure 6.4. Simulation of photon density showimg 1 - T waveform, 
at d = 7.6 |im, R'M = 0.318, JRO = 1.5, and m = 0.4 
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Figure 6.5. Simulation of photon density showimg 2 - T waveform, 
at d = 7.6 |xm, R'M = 0.318, JRO = 1.5, and m = 0.58 
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Figure 6.6. Simulation of photon density showimg 4 - T waveform, 
at d = 7.6 |j.m, R'm = 0.318, JRO = 1.5, and m = 0.65 
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Figure 6.7. Simulation of photon density showimg chaos, 
at d = 7.6 jxm, R'M = 0.318, JRO = 1.5, and m = 0.7 
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When the current modulation index m is 0.4 as in Figure 6.4, after some 

transient waveform, the waveform maintains the fundamental frequency cOm-

It will be suggestive to mention that modified relative threshold current 

density due to the external cavity in this case is JRIK = NRS = 0.946 (refer to 

Eq.(5.21)). At CDMTR = 1.5%, current density JR is 0.9, which is below the 

threshold value. But since the modulation frequency is high, the photon 

density never drops to zero. When the modulation index increases to 0.58 in 

Figure 6.5, the photon- density waveform shows period-doubling 

(subharmonic) bifurcation, which is called a 2-T waveform. With a further 

increase of m, we have a 4-T waveform at m=0.65 as shown in Figure 6.6, and 

finally a chaotic waveform at m=0.7 as shown in Figure 6.7. 

We show the bifurcation diagram of this case in Figure 6.8. The sampled 

peak photon density is plotted as a function of modulation index m. We have 

the first 2-T bifurcation around m = 0.5. We can see clearly up to 8-T 

bifurcation, after which the bifurcation is hardly distinguishable. We have a 

chaos band around 0.68 < m < 0.73; then we have a short window, and then 

the second chaos band again. This bifurcation diagram has a form similar to 

that of the solitary laser diode which was reported in the literature [104]. 

These bifurcations and chaotic effects also depend on the modulation 

frequency. At very low frequency such phenomena may not occur. And they 

may easily take place around the relaxation oscillation frequency. Therefore, 

it is worthwhile to study the influence of the change in the modulation 

frequency on the bifurcation phenomena. But in this work, we mainly focus 

our attention on the effect of the modulation index m on the bifurcation. 
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Figure 6.8. Bifurcation diagram at d = 7.6 [im, JRO = 1.5> FM = 1.052 FRX, 
and R'm = 0.318 
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Now, we change the external cavity length d to 7.79 ^im, which is close to 

an out of phase condition {QX = 2K ). We use the same parameters as before: 

R2 = 0.32, R'm = 0.318, and JRO = 1-5. The modulation frequency is chosen 

such that 0)rn = 0.742 Cûrx- Iri this situation, corx is a different value from that of 

the previous example, and we get the actual modulation frequency fm = 3.85 

GHz. The modified relative threshold current density is jRth = Nrs =1.189. 

A bifurcation diagram is shown in Figure 6.9 for this case. We find that the 

shape of this diagram is very peculiar. We have the first sub-harmonic 

generation around m=0.25. Around m=0.3, suddenly, the photon density 

shows a 3-T waveform. According to [104], at the modulation frequency, 

which is smaller than the relaxation oscillation frequency, the bifurcation 

diagram shows a shape which is a very typical form of the period-doubling 

route to chaos. Here, we have a sudden jump from a 2-T to a 3-T waveform, 

and a very strange chaotic band around 0.45<m<0.5. The corresponding 2-T, 3-

T and chaotic waveforms are shown in Figures 6.10 - 6.12, at m=0.27, 0.3, and 

0.4 respectively. As clearly shown in Figure 6.11, this 3-T waveform is an 

actual stable solution, which is totally different from the spurious 3-T window 

due to the hysteresis in the solitary laser [104]. 

In Figure 6.13, we expand the bifurcation diagram of Figure 6.9 around 

m=0.295 to investigate in detail. We can not find any explicit period-doubling 

route from a 2-T to a chaos before the diagram reaches a 3-T window at 

m=0.2973. A completed period-doubling cascade is known to be an infinite 

sequence of local bifurcation, each of which is a continuous bifurcation [118]. 

This continuity is evident in the logistic map bifurcation diagram. Therefore, 

the period- doubling cascade is referred to as a continuous transition to chaos. 
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Figure 6.9. Bifurcation diagram at d = 7.79 pm, JRO = 1.5, FM = 0.742 FRX, 
and R'M = 0.318 
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Figure 6.10. Simulation of photon density showing 2 - T waveform, 
at d = 7,79 |im, R'm = 0.318, JRO = 1.5, and m = 0.27 
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Figure 6.11. Simulation of photon density showing 3 - T waveform, 
at d = 7.79 |im, R'm = 0.318, JRO = 1.5, and m = 0.3 
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Figure 6.12. Simulation of photon density showing chaos, 
at d = 7.79 iim, R'M = 0.318, JRO = 1.5, and m = 0.4 
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Figure 6.13. Expanded plot of bifurcation diagram of Fig. 6.9 around 
m = 0.295 
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In that sense, the route to chaos in the bifurcation diagram shown in Figure 6.9 

can not be told as the perio-doubling bifurcation route. 

In Figures 6.14 and 6.15, we show the bifurcation diagram for the weak 

coupling level. R'm = 0.005, and Ri = 0.32, for both figures. The parameters 

used in calculation of Figure 6.14 are d = 7.6 |im, JRO = 1.5, cOm = 0.967 tOrx, 

which is 6.43 GHz, and the modified relative threshold current density JRIH = 

NRS = 0.990. For Figure 6.15, d = 7.79 |im, JRO = 1.5, Cùm = 0.931 corx / which is 

6.05 GHz, andjRth =Nrs =1.012. Surprisingly, in these examples, the 

bifurcation diagram for the in-phase configuration ( fix = TC ), i.e.. Figure 6.14, 

shows more strange shape than that for the out-of-phase configuration in 

Figure 6.15. It has a sudden jump in peak photon density amplitude and 

folding structure, but does not have a 3-T window. 

The small signal analysis which is discussed in Chapter 5 can not be 

applied to analyze this bifurcation phenomenon, since the modulation index 

is large. The large - signal analysis was introduced for analysis of solitary laser 

diode [119,120], and for explaining the first subharmonic generation of the 

modulated solitary laser diode [121]. By solving rate equations with 

perturbation methods [109], the period doubling bifurcations up to the 4-T 

bifurcation were accounted for under large - signal modulation. 

In this work, the further analytical study about this route to chaos is not 

included. However, to see the qualitative characteristics of chaotic behavior, 

we show the return maps of peak photon density in Figures 6.16-6.20. We 

plot the peak photon density SR(n) vs. SR(n+l), where SR(n) represents the n-

th peak photon-density. These return maps are similar to the Poincaré return 

map [118], but different from Poincaré return map since the actual time 
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Figure 6.14. Bifurcation diagram at d 
and R'm = 0.005 

= 7.6 nm, JRO = 1-5, fm = 0.967 frx, 
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Figure 6.15. Bifurcation diagram at d = 7.6 |im, JRO = 1.5, fm = 0.967 frx 
and R'm = 0.005 
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interval between the n-th sampling and the (n+l)-th sampling is not constant 

as shown in Figure 6.6. 

Figure 6.16 shows the return map for the in-phase configuration whose 

bifurcation diagram is plotted in Figure 6.8. The modulation index m is 0.695. 

This return map basically is similar to the logistic map except a strong folding 

structure. It can be classified as a unimodal one-dimensional map [118], since 

it is defined on a finite interval and has a single smooth maximum. The 

logistic map is also one of the example of a unimodal map. 

Figures 6.17 and 6.18 are the return maps for the out-of-phase 

configuration plotted in Figure 6.9, when m=0.35, and m=0.335 respectively. 

At m=0.335, it again shows clearly a 3-T feature. 

Figure 6.19 is another example for the in-phase case of Figure 6.16. It is 

plotted for m=0.57. For the in-phase configuration, the return maps maintain 

their unimodal characteristics for both weak coupling (Figure 6.19) and strong 

coupling ( Figure 6.16 ). 

Figure 6.20 shows the return map for the out-of phase case with weak 

coupling, R'm = 0.005. The shape of the return map is not a typical type of 

unimodal map, since three quadratic structures are overlapped each other. 

These inner structures evolve as the external coupling increases, and we get a 

twisted return map of Figure 6.17 for R'm = 0.318. This different feature from 

the unimodal characteristic in return map for the out-of phase configuration is 

thought to be one of the reasons to make an abrupt 3-T window as shown in 

Figure 6.9. 

We assert that the route to chaos in a modulated external cavity laser 

diode is not limited to the period-doubling route, which has been believed as 
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Figure 6.16. Return map corresponding to the condition in Fig. 6.8, 
with m = 0.695 
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Figure 6.17. Return map corresponding to the condition in Fig. 6.9, 
with m = 0.35 
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Figure 6.18. Return map corresponding to the condition in Fig. 6.9, 
with m = 0.335 
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Figure 6.19. Return map corresponding to the condition in Fig. 6.14, 
with m = 0.57 
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Figure 6.20. Return map corresponding to the condition in Fig. 6.15, 
with m = 0.56 
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the only route in modulated solitary laser diode, especially for the out-of-phase 

configuration. However, it will need further study to make it clear what 

specific kind of route to chaos is involved in this case exactly. 

We should mention that if we add the spontaneous emission noise terms 

in our model, the chaotic behavior will be probably weakened, as supposed 

from the noise analysis of logistic map [101], and the solitary laser diode [104]. 

We may extract another useful conclusion from the analysis of this 

chapter. Again, it is better to maintain the operating distance close to the in-

phase configuration. We can find that in the out-of-phase configuration, the 

modulated photon density will be bifurcated to a 2-T waveform at the lower 

modulation index than the in-phase configuration, which may limit the high 

frequency modulation capability of the laser diode. 
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CHAPTER?. SOME APPLICATIONS OF 
THE SHORT EXTERNAL CAVITY LASER DIODE 

Optical Disk Head 

As one of the commercial applications, the ultrashort external-cavity laser 

diode can be used as the optical head for phase-change recording media [42,112]. 

A long external cavity laser diode with two quarter - wave plates has been 

proposed as a detecting head for magnetooptic signals [113]. In particular, the 

external cavity optical head for phase-change media has performed with 

promise experimentally for providing high data transfer rate and short access 

time owing to its light weight [42]. 

The configuration of an optical disk head under consideration is shown in 

Figure 7.1. The phase-change recording medium is composed of two different 

parts, a high reflecting region with a power reflectivity Rm^ (or a field 

amplitude reflectivity pm^) and a low reflecting region with a power 

reflectivity of Rm' (or pm^). Both the laser diode and a photodetector are 

attached to an air-bearing slider in a sealed, dust-free environment. As the 

optical disk rotates, an air-bearing scheme determines the flying height d 

(usually only a few micrometers) depending on the linear disk velocity. The 

output power detected by the photodetector located at the rear facet of the laser 

diode has either a value of corresponding to Rm^ or pl corresponding to 

Rm' under the properly given bias current Ibias- The facet facing the medium 

was antireflection coated to reduce R2, and a special ridged waveguide type 

laser diode is used to improve the performance of the optical head [42]. 
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Some types of optical disk memory systems and optical video disk players 

are operated with constant angular velocity (CAV). In such cases, the linear 

velocity of rotating disk differs at different radii; this difference causes change 

in flying height d. When the disk rotates at 1200 r/min, the linear velocity at 

r = 50 mm is 6.3 m/sec and becomes 15.1 m/sec at r = 120 mm. According to 

[42], such a change in disk velocity corresponds to the change in flying height 

from 0.7 to 1.2 pm or from 2.5 to 4.2 (im depending on the type of air-bearing 

slider used. Even in a constant-linear-velocity (CLV) system, it is difficult to 

control the flying height precisely because it is difficult to assemble laser diode 

chip to the air bearing slider with high precision. However, as shown in 

Figure 4.17(c), the output power is not only a function of reflectivity of the 

external reflector but also a function of flying height d. The distance between 

two neighboring peaks or between two valleys is approximately XII. This 

suggests that the output power fluctuates badly as the flying height changes, as 

mentioned previously. For an example. Figure 7,2 shows the output power 

as a function of flying height. We use the open resonator model discussed in 

chapter 4, to calculate output power characteristics of this ultra short external 

cavity configuration. The solid line represents corresponding to Rm^ = 

0.35, and the dashed line represents corresponding to Rm' = 0.04. One of 

the laser facets is assumed to be antireflection coated to give R2 = 0.05. The 

emitting area is assumed to be 1.2 ^im X 1.2 p.m [78,112]. As shown in Figure 

7.2, ph is not always bigger than P", especially at large d (d > 1.5 |im) ; Pl is 

larger than P^ around the valleys. Also, P^ at the first valley (d =» 0.8 |im) is 

smaller than pl at the first peak (d = 0.6 jim). Consequently, in this case if the 
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flying height changes about 0.2 ^m, it is impossible to read the data recorded in 

the optical disk because the detected data are reversed. 

It is, therefore, desirable to know under what condition Ph becomes 

always greater than P' (i.e., P^ > pl) within the given range of flying height. 

Such a desired condition is derived in the following subsection for two cases. 

Case A: With coupling coefficient Cn = r" ( r is constant) 

Let us start from the simplest case of constant r. Often r=l is used. We 

assume here that Cn=l. Then from Eq.(4.44) the effective field-amplitude 

reflectivity pe can be written into the following form: 

Pz + PmGxp (jv) 

I + P2 Pm exp (jv) 

and the effective power power reflectivity can be written as 

® l+RzRm + Zpz PmCOSV 

in which xj/ = 47id/X, as defined in Eq. (4.45). The field amplitude reflectivities 

P2 and Pm are assumed to be real quantities as usual. 

It should be noted that Re is a periodic function of the external cavity 

length d and the plot of Re versus d has relative maxima (referred to as peaks) 

and relative minima (referred to as valleys). The values of the maxima or 

minima do not vary with d. In other words, the value of Re at each peak is 

same throughout the whole range of flying height under consideration. 
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For convenience of discussion, we define Rev^ and Rep^ as the value of 

Re at the valley for the case of high reflective medium with pm = Pm^ and as 

that at the peak for the case of low reflective medium with pm = Pm^ 

respectively. Because dPi/dRe > 0, the necessary condition for can be 

expressed as 

For the configuration being considered, pm is a negative quantity and Re takes 

its relative minima when cos y = -1 and +1, respectively. Consequently it can 

be shown that the requirement Eq.(7.3) can be met if the following condition 

that is to be imposed on the reflectivity is satisfied: 

Rev ^ (7.3) 

Rm " > Kco " (P2 - Pm') (7.4) 

where 

(7.5) 

in which 

I + R2 ' 
and Pm ' < 0 • (7.6) 
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The variation of Rco^/ given by Eq.(7.5), with R2 for different values of Rm', 

is shown in Figure 7.3. We observe that the values of R^o^ increases 

monotonically with R2 for the case of a fixed Rm^ and it also increases with 

Rm' for the case of a fixed R]. This implies that the range of Rm^, over which 

the requirement Eq.(7.3) can be met, is broadened by reducing either R2, Rml 

or both. It should be pointed out that a constant r may be used to determined 

approximately the effective power reflectivity Re in the case of a long external 

cavity, but it is not adequate for studying the case of an ultrashort external 

cavity configuration such as in the optical disk head. 

Case B: Variable complex coupling coefficient 

The complex coupling coefficient Cn for the n-th reflection, given by 

Eq.(4.46), can be expressed in the following form: 

Cn = exp ( - a d n ) (7.7) 

where the complex loss factor a is defined as 

a = a" + j a' (7.8) 

Expressing the coupling coefficient in the complex form as given by Eq.(7.7) is 

equivalent to considering the configuration in which the external cavity 

resonator is regarded as lossy resonator. 

In this case, the pe is given as 
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P2-^Pmexp(-ad)exp(j\|/) 

~ 1 + P2 Pm exp ( -cxd ) exp (jiy) 

and Re is given by 

R2 + Rm exp (-2a"d) + 2p2 exp(-a"d) cos (\|/ - a'd) 
~ 1 + R2Rm exp(-2a"d) + 2p2 p^ exp(-a"d) cos (y - a'd) (7.10) 

Note that as a' and a" approach to 0, Eq.(7.9) and (7.10) reduce to Eq.(7.1) and 

(7.2), respectively, as expected. From Eq.(4.46) and (7.7) we obtain 

An 
a' = —^ (7.11) 

Because a circular beam spot is preferred to achieve high performance [78] for 

the optical disk head application, we consider, for simplicity's sake, the case 

where the emitting area of a laser diode has a square shape, that is , a = b. In 

this case, a" and a' can be expressed as 

n d 

(7.12) 

a' = 2XNa(n)An / a^ (7.13) 

a" = 2XNa(n)ôn / a^ (7.14) 
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It should be noted that the plot of Re versus d, given by Eq.(7.10), has relative 

maxima and minima as in the previous case A. However, any two adjacent 

peaks or valleys do not have the same value of Re, which is in contrast to the 

case A. 

Following the procedure used in case A, we can derive the necessary 

condition for > P', which is expressible as 

Rm ^ > Rc ^ (7.15) 

where 

Q - Pm ^ exp ( -a"ds ) 

. 1 - Q Ptn ' exp ( -a"ds ) 
exp ( 2a"di ) (7.16) 

in which dg represents the shortest distance at which Re^ has one of its relative 

maxima while di represents the longest distance at which Re^ has one of its 

relative minima within the range of d. Here Rg^ denotes the value of Re for 

the case of a low reflective medium with pm = Pm^ ; Re^ denotes that for the 

case of the high reflective medium pm = Pm^- These distances ds and di 

must satisfy the following equations: 

[ yCdj) - a'dg ] = ( 2m| + 1 ) tc (7.17) 

[ \i/(di) - a'di ] = 2m2 it (7.18) 

where mi and m2 are integers. 



www.manaraa.com

154 

As an illustration, we consider a specific example where 2a = 2b = 1.2 p.m, 

X = 0.78 ^im, and the corresponding Fresnel zone number becomes 

2 
N» = Nb(n) = -5^ = -^ (7.19) 

where the flying height d is given in micrometers. The variation of 

parameters a' and a" with N is calculated and illustrated in Figure 7.4. We 

observe that a' increases with N monotonically while a" increases with N 

initially then gradually decreases after it reaches a maximum. 

In the optical disk head, since the flying height d is usually less than a few 

micrometers, we can determine the range of interest for N to be 0.05 < N < 0.5. 

In this range, a" varies little and maintains almost a constant value of 0.015, 

whereas a' varies considerably, as shown ib Figure 7.4, even though a' also 

approaches a constant value as N approaches infinity. Fortunately the phase -

modification effect by the presence of An of the coupling coefficient does not 

change the shape of plot of output power versus flying height very much 

except for a little transitional shift as shown in Figure 4.17(c). Therefore, in 

deriving the necessary condition for > P', we can neglect the effect of phase 

modification, i.e., by setting a' = 0 or An = 0. 

To satisfy the necessary condition for ph > pl within the flying height 

range of 0.5 ^im < d < 1.5 nm with 2a = 2b = 1.2 (im and X = 0.78 pm, we can 

use Figure 7.4 and Eq.(7.14) to determine a" = 0.3313 ( l/nm) and set a'= 0. 

Consequently, we obtain dg = 0.585 |im and di = 1.56 |im from Eqs.(7.17) and 

(7.18), respectively. Using the above parameters, the variation of the 

parameter with R2, given by Eq.(7.16), is illustrated for the different 
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values of Rm' in Figure 7.5. This figure can be used as guide for the design of 

the optical disk head, which has a large tolerance in flying height. To check 

the validity of the criterion specified by Eq.(7.15), we choose the set of values of 

power reflectivities, R2 = 0.02, = 0.6, and Rm' = 0.04, which satisfies the 

requirement Eq.(7.15). Keeping other parameters the same as those used in 

calculation of Figure 7.2, the plot of output power Pi versus flying height d is 

calculated and illustrated in Figure 7.6. The result shown in Figure 7.6 clearly 

indicates that our prediction based on Eq.(7.15) has proven reasonable. Within 

the flying height range of 0.5 |im < d < 1.5 |im, is indeed greater than PL 

The comparison of Figures 7.2 and 7.6 also demonstrate the importance of the 

choice of values of R2, Rm^/ and Rm^ in order to satisfy the condition P^ > PL 

In summary, the necessary condition for which a short external - cavity 

laser diode can be used as the optical disk head is derived approximately. The 

optical disk head is one of the biggest area of commercial application of laser 

diodes. A single laser diode and reflecting surface of the optical disk can form 

an external cavity configuration. In order to make this optical disk head more 

practical, a large tolerance in flying height is preferred. By approximating our 

open resonator model derived in chapter 4 further to deal with the short lossy 

external cavity resonator, we have derived a criterion for this tolerance which 

we believe to be useful for the design of the optical disk head. 
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Laser Diode Sensor 

Since the optical feedback from the external reflector strongly affects the 

laser diode properties, especially the light output power characteristic, the 

short external cavity configuration has been used to build various laser diode 

sensors [45,73]. In this section, we present measurements of the thermal 

distortion on the gold coated glass plate, produced by an modulated Ar laser 

beam. The results help to understand the liftoff effect in the photoinductive 

(PI) signal, which is the new dual-mode nondestructive evaluation (NDE) 

method, combining the thermal wave and eddy current methods [114 and 

references therein]. 

Figure 7.7 shows a schematic diagram of the experiment. A modulated Ar 

laser is focused on the 2.5 |im thick gold film through the 1 mm glass substrate 

to provide a thermal excitation, which is the same configuration as that used 

in the PI method. As usual, a decapsulated package ( Mitsubishi ML4402 X = 

780 run) of AlGaAs laser chip and Si photodiode is mounted on a temperature 

stabilized platform by means of a Peltier device. A laser diode is coupled to 

the opposite side of the gold film which forms the external cavity of the laser. 

As the gold film expands due to localized temperature perturbation, the 

coupling distance of the external cavity is changed which affects the output 

power level of the laser diode. The detected signal at the photodetector is fed 

to a lock-in amplifier to give a synchronized signal to the mechanical chopper 

which is used to modulate the Ar laser . 

Since the output power shows the pseudo-periodic response to the 

external cavity length with a period of half a wavelength, the operating 
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distance ( external cavity length without thermal excitation) should remain 

within several hundredth of a micron in order to give a linear small signal 

relationship. This can be done by introducing any kind of feedback to control 

either the operating distance or the wavelength, unless the thermal distortion 

height is larger than the quarter wavelength (0.19 ^im) of the laser diode. At 20 

Hz modulation, the thermal distortion height approaches this limit with 5W 

AT laser power. In chapter 4, the asymmetry in the output response curve is 

discussed. Due to this phenomenon, the differential sensitivity l9P/9dl, 

which represents the ratio of the optical power change to the distortion height, 

can vary depending on the polarity of 9P/9d . The sensitivity is greater at an 

upward slope than at a downward slope. 

We devised a simple method to solve all these problems without any 

complicated feedback scheme. Extremely low frequency vibration is purposely 

introduced to the sample as shown in Figure 7.7. The amplitude is chosen to 

be small ( about 2 |im ) but large enough to cover the several periods of the 

response curve. During a preset window time a microcomputer finds a 

maximum value of the lock-in amplifier output, which is proportional to the 

distortion height that we want to measure. A result of a line scanning across 

the thermal spot is shown in Figure 7.8. As the modulation frequency 

increases, the thermal distortion height is shown in Figure 7,9. The error bars 

in the figure show the measurement obtained with the IW Ar laser power, 0.1 

Hz sample vibration, and a 13 second window time. The focal length of the 

lens L is 12 cm. The focused beam spot size is measured to be about 100 |im. 

The solid line in the figure is the best fit curve, which shows f-0-814 

dependence. 
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Now, we will check the validity of our measurement results which are 

obtained using external cavity laser diode sensor. Comparing with the 

interferometric technique [115], the direct scan method can give an actual 

thermal distortion shape and direct reading of distortion height. The thermal 

diffusion length is defined as the distance over which the magnitude of a 

harmonic thermal wave decays exponentially to 1/e of its initial value, and it 

is given by [116] 

LTH = (K/7TFPC)°'^ (7.20) 

where K is the thermal conductivity, p is mass density, and C is the specific 

heat. With the nominal values [117], Lth of gold and glass at 20 Hz can be 

calculated as 1.42 mm and 0.095 mm respectively. In our sample, Ar laser 

power is absorbed at the thin film layer of gold, but the heat diffusion process 

is controlled by both the gold layer and the glass substrate. Therefore, thermal 

spot size is expected to be some value between those two. Considering the 

beam divergence due to about 50 p.m operating distance and 100 nm beam size, 

we may roughly estimate the effective distortion width as 0.8 mm from the 

result shown in Figure 7.8. The distortion height may be roughly calculated by 

[117] 

h  =  a th î lP / (2 re fpCAeff )  (7 .21)  

where ath is the thermal expansion coefficient, P is the incident Ar laser 

power, TJ is the absorption efficiency, and Aeff is the effective heated area. 
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Using the nominal value of glass ath = 10*5 and Aeff = n (0.8) / a, t[ = 0.5, P = 

5W, h becomes 0.2 |im, which agrees with the experiment as described earlier. 

A rigorous calculation of the surface displacement involves solving the Navier 

- Stokes equation [117], but frequency dependence may be qualitatively 

obtained from the simple relation described above for the two extreme cases. 

First, in the case where the laser spot size w is much greater than Lth, Aeff 

remains constant, so that thermal distortion height will have 1 /f dependence. 

Second, in the opposite extreme of w«Lth , the thermal distortion height will 

be constant for the frequency change, since Aeff = Lth^ is inversely 

proportional to the frequency. In our experiment w and Lth are comparable to 

each other, and the frequency dependence shown in Figure 7.9 is obtained. 

Since the PI signal is more likely proportional to the surface integral of 

temperature change, rather than the volume integral, it shows different 

frequency characteristics from those of the thermal distortion height. 

Therefore, by comparing the frequency dependence of the PI signal and 

thermal distortion height, we hope to see the liftoff effect in the PI 

measurement. This is one application of the external laser diode sensor to 

measure small displacements directly. 
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CHAPTER 8. CONCLUSIONS 

This work deals with the characteristics of external cavity laser diodes. 

Emphasis has been placed on the short external cavity configuration. 

First, the general governing model equations which include the multiple 

reflection effect have been derived. The multiple reflection effect is handled 

with an effective reflectivity operator. Here, we take two different approaches 

to investigate the stationary solutions of model equations. 

In the ultra short external cavity configuration, where external cavity 

leng th  d  i s  l e ss  than  20  | im,  we  show tha t  the  coup l ing  coef f i c ien t  Cn ,  

representing the fractional amount of the coupled field into the laser diode at 

the n-th reflection, becomes a complex function of the external cavity length 

and the near field beam size of the laser diode. The coupling coefficient 

consists of an amplitude-reduction factor and a phase-modification factor. 

The diffraction loss is responsible for producing the complex coupling 

coefficient, which is derived through the open resonator theory. We observe 

experimentally the asymmetry in optical power versus external cavity length 

characteristic in the short external cavity configuration, and show that this 

phenomenon can be explained only by introducing a complex coupling 

coefficient, which proves the validity of our open resonator model. Applying 

this model, we have derived a criterion for which a short external cavity laser 

diode configuration can be used as the optical disk head practically, which we 

believe to be useful for the design of the optical disk head. The asymmetry has 

practical importance in laser diode sensor application, since the slope of the 

characteristic curve will determine the sensitivity of the sensor. In this 

analysis we have assumed a fixed lasing wavelength, which may be justified 
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since the amount of actual wavelength shift in the ultra short cavity 

configuration is very small. 

When the external cavity length is longer than several 10 |j.m, the 

variation in coupling coefficient due to diffraction loss becomes negligible, and 

we may assume simply that Cn = r" (i.e., the external cavity resonator is regarded 

as a lossy resonator and constant loss per roundtrip is assumed). In this case, 

the normalized feedback operator Z(t) can be reduced to the closed form with 

slow varying and short cavity length approximation. The set of stationary 

solutions for the photon density, lasing frequency, and carrier density are 

studied. The graphical solution method is illustrated, and the single 

longitudinal mode condition has been derived. It has been shown that the 

single mode condition will be more likely met for the short external cavity 

laser and for the external reflectivity well below or beyond the facet reflectivity. 

In order to analyze rigorously the spectral characteristics of the short external 

cavity laser, it is recommended that a complex coupling coefficient, defined 

from open resonator theory, be used because the additional phase-modifying 

effect may affect the phase condition. Though the amount of the correction 

term is not significant, it may add some instability to the laser diode 

characteristics. This effect has been left for a future investigation. 

Dynamical stabilities have been investigated for the stationary solutions 

obtained. External cavity operation changes the laser gain. Our analysis 

shows that lasing frequency change caused by this gain change effect has a 

dominant influence on the dynamical characteristics of the external cavity laser 

diode. As previously reported, shorter external cavity length tends to be more 
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stable than the longer one if every other parameter is kept the same. But, we 

show that even in case of the very short external cavity, dynamical instability 

may happen when the external reflectivity becomes close to the facet 

reflectivity, and simultaneously, feedback phase enters an out-of phase 

condition. The three coupled differential model equations are solved 

numerically by using the Runge - Kutta algorithm' to give the time evolution 

of laser parameters. In order to do this easily, the model equations are 

transformed and normalized. Numerical simulation results agree well with 

the analytic solution in the simple case, which proves the validation of the 

simulation program. Also, with some approximation, they are solved 

analytically by linearized small signal expansion to give a simple expression 

for the relaxation oscillation frequency. It is shown that the relaxation 

oscillation characteristic is very different from that of the solitary laser diode 

and changes severely as feedback phase varies. We can not expect to find the 

strange attractor for the autonomous (d.c. bias current) system with our model 

due to the inherent characteristics of the approximations we made. In order to 

investigate rigorously dynamical stability and the possibility of chaos, we 

should solve our general model equations directly without further 

approximation, which may be a subject of future work. 

The chaotic behavior in the current modulated external cavity laser diode 

is investigated for the first time, mainly based on the numerical solutions of 

model equations. We have found that the route to chaos in this 

nonautonomous system may not be limited to the period-doubling route, 

which had been believed to be the only route in the modulated solitary laser 

diode so far, by showing that there is a route to reach a chaotic band followed 
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by a 3-T window. Further study will be needed to investigate this chaotic 

behavior analytically and experimentally, and to make it clear what specific 

kind of route to chaos is involved in this case. 

In general, we have drawn a conclusion that it is better to operate the 

external cavity laser at the operating distance close to the in-phase 

configuration (constructive interference position), since it will not only give 

better stationary properties such as higher optical output power at the same 

injection current level, but also will offer more stable dynamical characteristics 

for both autonomous and nonautonomous cases. In addition, it is the least 

sensitive operating position with respect to any parameter change. 

Finally, we have shown the experimental results to measure the 

thermally expanded distribution of metal coated glass substrate as one of the 

application examples of the short external cavity laser diode. In performing 

this experiment, the asymmetry in the P - d curve should be considered and 

treated in a proper manner in order to obtain good results. 
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APPENDIX A. SINGLE MODE CONDITION 
AROUND OUT-OF PHASE POSITION 

Here, we investigate the single mode condition Eq.(4.25) around Qst = 2m7c 

(out-of phase condition), since it is obvious that only around this region, 

single mode condition has a chance to fail as shown in Figure 4.11. Also, from 

Figure 4.10, we can narrow down the range of investigation to around R'm = 

R2. Let us assume 

QsX = 2m7i + a, lal «1 (A.l) 

and 

rpm = -P2"( 1 + 5 ), 151 « 1 (A.2) 

or 

R'm = R2 ( 1 + 2S ) (A.3) 

Then, the single mode condition (RHS of Eq.(4.25)) is approximately reduced to 

X 1 
S.M.C. = 1 — —'-T-

:in Ô 

1  -Rz  a  
- a -r-

1 + R2 
(A.4) 

which may be used as a rough estimating criterion. 
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When R'm < R2 , i.e., 5 < 0, Eq.(A.4) shows that single mode condition is 

satisfied for CT > 0, i.e., flgX > 2mK, but for certain negative value of a, it 

becomes dissatisfied. Also we can see that larger a, and smaller S will give 

higher chance for multi - mode lasing. 
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APPENDIX B. DERIVATION OF THE STABILITY CONDITION 

In this appendix, we derive the stability condition of Eq.(5.44) starting 

from the three coupled rate equations Eqs. (5.20)-(5.22). If we define the 

elements of the Jacobian matrix Eq.(5.41) as 

(B.L) 

where XI = SR , X2 = NR ,  X3 = QR , and subscript s denotes that partial 

derivatives are performed at the steady state equilibrium point ( SRS , NRS/ 

ftRS). Then, we obtain 

Fll ls = 0 

SRS 
F l 2 l s  =  

1  +  —  [  A - B ]  

~'in 

dL 

d^R 
13 I s -

1 + — [ A - B ]  
^in 

^21 I s - ̂  - Nrs - -T— 
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^22 Is- f SRS *'5 

^23 ls = 0 

F3I ls = ̂ 5 F2I Is 

F32 I s = • ^22 Is 

F33I s = 0 

where 

NR 

from Eq. (5.22). 

To be dynamically stable, the real part of the eigenvalues of the Jacobian 

matrix should not have positive sign. Let p be the eigenvalues of J. The 

characteristic equation can be easily obtained as 

p [ p^ — F22 ' p — F21 • ( F|2 + FI3 • Yg ) ] = 0 (B.3) 

Therefore, the eigenvalues are 
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F22±[ll2 + 4F2i(Fi2 + Fi3Ys)f^^ 
P = 0 / 2 -

Notice that 

"^ph 
F22 = - Srs —z— < 0 

•"S 

F21 < 0 

The stability condition is reduced to 

^12 ^13 0 

which will be reduced to the form in Eq. (5.44) after rearrangement. 
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Fa ± [ 1% + 4 Fj, ( F,2 + F,3 Ys ) 
p = 0 , 5 

Notice that 

^ph 
F22 = - SRS - TT" < 0 

*'S 

F21 < 0 

The stability condition is reduced to 

which will be reduced to the form in Eq. (5.44) after rearrangement. 
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